章节大纲

  • lesson content

    Gary wants to build a skateboard ramp, but it can’t be too steep. If he has a platform 3 m high and a board 5 m long, how far out should the board extend from the platform?
    ::Gary想建造滑板坡,但不会太陡峭。 如果他有一个高3米高的平台和一个5米长的板,董事会应该从平台延伸到多远?

    In this concept, you will learn how to solve equations using the Pythagorean Theorem .
    ::在这个概念中,你将学会如何用毕达哥伦理论解析方程式。

    Solving Equations Using the Pythagorean Theorem
    ::利用毕达哥里定理解决等式

    The Pythagorean Theorem states that the sum of the squares of the two legs of a right triangle is equal to the square of the hypotenuse . In a math sentence, where  a and  b are the legs and  c is the hypotenuse, it looks like this:
    ::Pytagorean Theorem指出,右三角形两腿的平方和等于下限的平方。在数学句中,a和b是双腿,c是下限,它看起来是这样的:

    c 2 = a 2 + b 2
    ::c2=a2+b2 (千兆赫)

    Mathematically, you can use this equation to solve for any of the variables, not just the hypotenuse.
    ::从数学角度来说,你可以用这个方程来解决任何变量,而不仅仅是下限。

    For example, the right triangle below has one leg equal to 3 and a hypotenuse of 5.
    ::例如,下方右三角形的一条腿等于3,低于5。

    Solve for the other leg.
    ::解决另一条腿。

    lesson content

    First, you can label either leg  a or b . Remember that the legs are those sides adjacent to the right angle.
    ::首先,您可以标为腿 a 或 b。 记住, 腿是右角的侧面 。

    Next, fill into the Pythagorean Theorem the values that you know.
    ::接下来,向毕达哥里安神话中填充你所知道的值。

    c 2 = a 2 + b 2 5 2 = 3 2 + b 2

    ::c2=a2+b252=32+b2

    Then, perform the calculations you are able to.
    ::然后按照你的能力进行计算

    25 = 9 + b 2
    ::25=9+b2 25=9+b2

    Remember that your goal is to isolate the unknown variable on one side of the equation. In this case it is b  and it is attached to a square and a + 9 . Perform the necessary operations to isolate b .
    ::记住您的目标是在方程的一面分离未知变量。 在这种情况下,它是 b, 并且它附属于一个正方形和一个+ 9 。 执行分离 b 的必要操作 。

    25 9 = 9 + b 2 9 16 = b 2 4 = b
    The answer is 4.
    ::25-9=9+b2-916=b24=b4 回答是4

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about Gary and his skate board ramp.
    ::早些时候,你得到一个问题 关于加里和他的滑板斜坡。

    One side, the base, was 4 m and the board, the hypotenuse, was 5 m. How high would the ramp be?
    ::一面是基底,4米, 板,下层,5米。坡道有多高?

    lesson content


    First, substitute .
    ::第一,替代。

    5 2 = 3 2 + b 2
    ::52=32+b2

    Next, perform the calculations.
    ::接下来,进行计算。

    25 = 9 + b 2 25 9 = 9 + b 2 9

    ::25=9+b225-9=9+b2-9

    Then, determine the square roots.
    ::然后,决定平方根。

    16 = b 2 4 = b

    ::16=b24=b

    The answer is 4 m. Gary’s board should extend 4 m from the base of the platform.
    ::答案是4米。 Gary的董事会应该从平台底部4米宽。

    Example 2
    ::例2

    Solve for  b to the nearest tenth.
    ::解决b到最近的十分之一。

    lesson content

    First, take the given lengths and substitute them into the formula

    4 2 + b 2 = 12 2 16 + b 2 = 144
    Next, subtract 16 from both sides of the equation.
    ::首先,将给定长度取以给定长度并将其替换为公式。 42+b2=12216+b2=144 下一个,从方程两侧减去16。

    16 16 + b 2 = 144 16 b 2 = 128

    Then take the square root of both sides of the equation.
    ::16-16+b2=144-16b2=128 然后取方程两侧的平方根。

    b = 11.3137085
    ::b=11.3137085... =11.3137085...

    Round to the tenths place
    ::回合到十分位

    b 11.3
    ::11.3

    The answer is 11.3
    ::答案是11.3

    Example 3
    ::例3

    A right triangle includes the dimensions of a , b = 6  and c = 13 . Solve for a .
    ::右三角形包含 a, b=6 和 c=13 的尺寸。 解决 a 。

    First, substitute.
    ::第一,替代。

    c 2 = a 2 + b 2 13 2 = a 2 + 6 2

    ::c2=a2+b2132=a2+62

    Next, perform the calculations you are able to.
    ::下一步, 执行您能够完成的计算 。

    169 = a 2 + 36 169 36 = a 2 + 36 36

    ::169=a2+36169-36=a2+36-36

    Then, determine the square roots.

    133 = a 2 11.532582594 = a 11.5 a

    ::然后确定平方根 133=a211.532582594...=a11.5a

    The answer is  a = 11.5
    ::答案是a=11.5

    Example 4
    ::例4

    A right triangle with a = 8 , b , and c = 12
    ::a=8,b和c=12的右三角形

    First, substitute.
    ::第一,替代。

    c 2 = a 2 + b 2 12 2 = 8 2 + b 2
    Next, perform the calculations.
    ::c2=a2+b2122=82+b2 下一个,进行计算。

    144 = 64 + b 2 144 64 = 64 + b 2 64

    ::144=64+b2144-64=64+b2-64

    Then, determine the square roots.
    ::然后,决定平方根。

    80 = b 2 8.9 b

    ::80=b28.9b

    The answer is 8.9
    ::答案是8.9

    Example 5
    ::例5

    A right triangle with a = 6 , b , and  c = 10  
    ::a=6、b和c=10的右三角形

    First, substitute.
    ::第一,替代。

    c 2 = a 2 + b 2 10 2 = 6 2 + b 2

    ::c2=a2+b2102=62+b2

    Next, perform the calculations.
    ::接下来,进行计算。

    100 = 36 + b 2 100 36 = 36 + b 2 36

    ::100=36+b2100-36=36+b2-36

    Then, determine the square roots.
    ::然后,决定平方根。

    64 = b 2 8 = b

    ::64=b28=b

    The answer is 8.
    ::答案是8岁

    Review
    ::回顾

    Use the Pythagorean Theorem to find the length of each missing leg. You may round to the nearest tenth when necessary.
    ::使用毕达哥里安定理词查找每条缺失腿的长度。 必要时您可以绕到最近的第十条。

    1. a = 6 , b = ? , c = 12  
      ::a=6,b=? c=12
    2. a = 9 , b = ? , c = 15  
      ::a=9,b=? c=15
    3. a = 4 , b = ? , c = 5  
      ::a=4,b=4,b=? c=5
    4. a = 9 , b = ? , c = 18  
      ::a=9,b=? c=18
    5. a = 15 , b = ? , c = 25  
      ::a=15,b=? c=25
    6. a = ? , b = 10 , c = 12  
      ::a=? b=10 c=12
    7. a = ? , b = 11 , c = 14  
      ::a=? b=11 c=14
    8. a = ? , b = 13 , c = 15  
      ::a=? b=13 c=15

    Write an equation using the Pythagorean Theorem and solve each problem. Round to the nearest tenth when necessary.
    ::使用 Pythagorena 理论书写方程式, 并解决每个问题。 必要时, 圆到最近的十分 。

    Joanna laid a plank of wood down to make a ramp so that she could roll a wheelbarrow over a low wall in her garden. The wall is 1.5 meters tall, and the plank of wood touches the ground 2 meters from the wall. How long is the wooden plank?
    ::乔安娜把木板放下来做一个斜坡,这样她就可以把一把手推车翻过花园的低墙壁。 墙长1.5米,木板与墙边两米处的地面相接。木板有多长?

    1. Write the equation.
      ::写出方程式
    2. Solve for the answer.
      ::解决答案。

    Chris rode his bike 4 miles west and then 3 miles south. What is the shortest distance he can ride back to the point where he started?
    ::克里斯骑着自行车往西4英里,然后往南3英里。

    1. Write the equation.
      ::写出方程式
    2. Solve the problem.
      ::解决问题

    Naomi is cutting triangular patches to make a quilt. Each has a diagonal side of 14.5 inches and a short side of 5.5 inches. What is the length of the third side of each triangular patch?
    ::Naomi 正在切开三角形的补丁来做一个缝隙。 每人有14.5英寸的对角面和5. 5英寸的短边。 每个三角形的第三边的长度是多少?

    1. Write the equation.
      ::写出方程式
    2. Solve the problem.
      ::解决问题

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源