Section outline

  • Graphs of Functions based on Rules 
    ::基于规则的函数图

    Of course, we can always make a graph from a function rule by substituting values in for the variable and getting the corresponding output value.
    ::当然,我们总是可以用函数规则绘制图表,用变量的值替换变量的值,并获得相应的输出值。

    Graphing a Function based on Rules 
    ::根据规则绘制函数图

    1. Graph the following function : f ( x ) = | x 2 |
    ::1. 图如下函数:f(x)x-2

    Make a table of values. Pick a variety of negative and positive values for x . Use the function rule to find the value of y for each value of x . Then, graph each of the coordinate points.
    ::绘制数值表。为 x 选择各种负值和正值。使用函数规则查找 x 的每个值的y值。然后,绘制每个坐标点的图表。

    x y = f ( x ) = | x 2 |
    -4 | - 4 2 | = | - 6 | = 6
    -3 | - 3 2 | = | - 5 | = 5
    -2 | - 2 2 | = | - 4 | = 4
    -1 | - 1 2 | = | - 3 | = 3
    0 0 2 ∣=∣ 2 ∣= 2
    1 1 2 ∣=∣ 1 ∣= 1
    2 2 2 ∣=∣ 0 ∣= 0
    3 3 2 ∣=∣ 1 ∣= 1
    4 4 2 ∣=∣ 2 ∣= 2
    5 5 2 ∣=∣ 3 ∣= 3
    6 6 2 ∣=∣ 4 ∣= 4
    7 7 2 ∣=∣ 5 ∣= 5
    8 8 2 ∣=∣ 6 ∣= 6

    It is wise to work with a lot of values when you begin graphing. As you learn about different types of functions, you will start to only need a few points in the table of values to create an accurate graph.
    ::当您开始图形化时,使用许多数值开展工作是明智的。随着您了解不同类型的函数,你只需要在数值表中的几点即可创建准确的图表。

    2. Graph the following function: f ( x ) = x
    ::2. 图如下函数:f(x)=x

    Make a table of values. We know x can’t be negative because we can't take the square root of a negative number. The domain is all positive real numbers, so we pick a variety of positive integer values for x . Use the function rule to find the value of y for each value of x .
    ::绘制一个数值表。 我们知道 x 不能是负数的平方根, 因为我们不能选择负数的平方根。 域名都是正数, 所以我们为 x 选择了各种正整数。 使用函数规则来查找 x 的每个值的 y 值 。

    x y = f ( x ) = x
    0 0 = 0
    1 1 = 1
    2 2 1.41
    3 3 1.73
    4 4 = 2
    5 5 2.24
    6 6 2.45
    7 7 2.65
    8 8 2.83
    9 9 = 3

    Note that the range is all positive real numbers.
    ::注意这个范围都是正数

    Real-World Application
    ::真实世界应用

    The post office charges 41 cents to send a letter that is one ounce or less and an extra 17 cents for each additional ounce or fraction of an ounce. This rate applies to letters up to 3.5 ounces.
    ::邮局收取41美分,以寄出一盎司或以下的信件,每多寄一盎司或盎司的分数,再寄17美分。此费率适用于最多3.5盎司的字母。

    Make a table of values. We can’t use negative numbers for x because it doesn’t make sense to have negative weight. We pick a variety of positive values for x , making sure to include some decimal values because prices can be decimals too. Then we use the function rule to find the value of y for each value of x .
    ::绘制数值表。 我们无法对 x 使用负数, 因为负数是没有道理的。 我们为 x 选择了各种正数, 以确保包含一些十进制值, 因为价格也可以是十进制值。 然后我们使用函数规则来为 x 的每个值找到 y 值 。

    x 0 0.2 0.5 0.8 1 1.2 1.5 1.8 2 2.2 2.5 2.8 3 3.2 3.5 y 0 41   41   41 41 58 58   58 58 75 75   75 75 92 92

    ::X00.20.20.50.811.21.21.51.822.22.52.833.23.55.ny041 41 414115858585858585858587575 75759292

    Example
    ::示例示例示例示例

    Example 1
    ::例1

    Graph the following function: f ( x ) = x 2
    ::如下函数图示: f( x) =x2

    Make a table of values. Even though x can’t be negative inside the square root, because we are squaring x first, the domain is all real numbers. So we integer values for x which are on either side of zero. Use the function rule to find the value of y for each value of x .
    ::绘制一个数值表。 即使 x 在平方根中不能为负值, 因为我们先对 x 进行对比, 域是全部真实数字。 因此, 我们将位于零的两边的 x 的数值整数。 使用函数规则来查找 x 的每个值的 y 值 。

    x y = f ( x ) = x 2
    -2 ( 2 ) 2 = 2
    -1 ( 1 ) 2 = 1
    0 0 2 = 0
    1 1 2 = 1
    2 2 2 = 2

    Note that the range is all positive real numbers, and that this looks like an absolute value function.
    ::注意这个范围都是正实际数字, 这看起来像一个绝对值函数 。

    Review
    ::回顾

    Graph the following functions.
    ::如下图所示函数。

    1. Vanson spends $20 a month on his cat.
      ::Vanson每月花20美元在他的猫身上
    2. Brandon is a member of a movie club. He pays a $50 annual membership and $8 per movie.
      ::布兰登是电影俱乐部的会员 他每年支付50美元和每部电影8美元
    3. f ( x ) = ( x 2 ) 2
      :sadxx)=(x-2)2
    4. f ( x ) = 3.2 x
      :sadxx)=3.2x
    5. f ( t ) = 27 t t 2
      :sadt)=27t-t2
    6. f ( w ) = w 4 + 5
      ::f(w)=w4+5
    7. f ( x ) = t + 2 t 2 + 3 t 3
      :sadx) =t+2t2+3t3
    8. f ( x ) = ( x 1 ) ( x + 3 )
      :sadxx)=(x-1)(x+3)
    9. f ( x ) = x 3 + x 2 5
      :sadxx)=x3+x25
    10. f ( x ) = 2 x
      :sadfx)=2x

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。