章节大纲

  • Division of Rational Numbers 
    ::理性数字分割

    An identity element is a number which, when combined with a mathematical operation on a number, leaves that number unchanged. For example, the identity element for addition and subtraction is zero , because adding or subtracting zero to a number doesn’t change the number. And zero is also what you get when you add together a number and its opposite, like 3 and -3.
    ::身份元素是一个数字,当与数字上的数学操作相结合时,该数字保持不变。例如,用于添加和减法的识别元素为零,因为对数字的增减零不会改变数字。当将数字和数字相加时,零也是数字,例如3和3和3。

    Multiplicative Inverses
    ::倍倍倍倍倍倍数

    The inverse operation of addition is subtraction—when you add a number and then subtract that same number, you end up back where you started. Also, adding a number’s opposite is the same as subtracting it—for example, 4 + ( 3 ) is the same as 4 3 .
    ::加法的反作用是减法——当您添加一个数字然后再减去同一数字时,你就会回到开始的位置。此外,加法的反向作用与减法相同——例如,4+(-3)与4-3相同。

    Multiplication and division are also inverse operations to each other—when you multiply by a number and then divide by the same number, you end up back where you started. Multiplication and division also have an identity element: when you multiply or divide a number by one , the number doesn’t change.
    ::乘法和除法是相互反向的操作,当乘以一个数字,然后除以同一个数字时,最终会回到开始的位置。乘法和除法还有一个特性元素:当乘以一个数字或除以一个数字时,数字不会改变。

    Just as the opposite of a number is the number you can add to it to get zero, the reciprocal of a number is the number you can multiply it by to get one. And finally, just as adding a number’s opposite is the same as subtracting the number, multiplying by a number’s reciprocal is the same as dividing by the number.
    ::数字的反面是数字可以加到数字中以获得零,数字的对等性是数字可以通过数字乘以获得一个数字。 最后,数字的对等性与减去数字相同,乘以数字的对等性与除以数字相同。

    The reciprocal of a number x is also called the multiplicative inverse . Any number times its own multiplicative inverse equals one, and the multiplicative inverse of x is written as 1 x .
    ::数 x 的对等也称为乘数反。它自己的乘数乘以乘以乘以乘以反等值等于一,而乘以反乘以乘以x 以一。

    To find the multiplicative inverse of a rational number , we simply invert the fraction —that is, flip it over. In other words:
    ::为了找到一个合理数字的乘数反,我们只是颠倒了分数,即翻转它。换句话说:

    The multiplicative inverse of a b is b a , as long as a 0 .
    ::ab的倍数反比是巴巴,直到0。

    You’ll see why in the following exercise.
    ::你会看到为什么在接下来的练习中。

    Finding Multiplicative Inverses 
    ::查找多种重复的逆数

    Find the multiplicative inverse of each of the following.
    ::查找以下每一种的多倍反差。

    a) 3 7
    :伤心a) 37

    When we invert the fraction 3 7 , we get 7 3 . Notice that if we multiply 3 7 7 3 , the 3’s and the 7’s both cancel out and we end up with 1 1 , or just 1.
    ::当我们颠倒第37点时,我们得到73分, 注意如果我们乘以3773分, 3和7分都取消, 我们最后只有11分, 或只有1分。

    b) 4 9
    :伤心b) 49

    Similarly, the inverse of 4 9 is 9 4 ; if we multiply those two fractions together, the 4’s and the 9’s cancel out and we’re left with 1. That’s why the rule “invert the fraction to find the multiplicative inverse” works: the numerator and the denominator always end up canceling out, leaving 1.
    ::类似地,49的反比是94;如果我们将这两个部分相乘,4个和9个取消,我们只剩下1个,这就是为什么规则 " 颠倒部分以找到多倍反向 " 起作用:分子和分母总是最后取消,留下1个。

    c) 3 1 2
    :伤心c) 312

    To find the multiplicative inverse of 3 1 2 we first need to convert it to an improper fraction . Three wholes is six halves, so 3 1 2 = 6 2 + 1 2 = 7 2 . That means the inverse is 2 7 .
    ::要找到312的倍数反差, 我们首先需要将其转换为不适当的分数。 三个整数是六分之一, 所以 312=62+12=72。 这意味着反数是27 。

    d) x y
    :伤心d)-xy

    Don’t let the negative sign confuse you. The multiplicative inverse of a negative number is also negative! Just ignore the negative sign and flip the fraction as usual. 
    ::不要让负面迹象混淆你。 负数的倍数反比也是负数! 只要忽略负数迹象, 照常翻转部分, 就可以了 。

    The multiplicative inverse of x y is y x .
    ::-xy 的倍增效应为 - yx 。

    e) 1 11
    ::e) 111

    The multiplicative inverse of 1 11 is 11 1 , or simply 11.
    ::111的乘数反比为111,或仅11。

    Look again at the last example. When we took the multiplicative inverse of 1 11 we got a whole number, 11. That’s because we can treat that whole number like a fraction with a denominator of 1. Any number, even a non-rational one, can be treated this way, so we can always find a number’s multiplicative inverse using the same method.
    ::再看看最后一个例子。 当我们以111的倍数反转时,我们得到了一个完整的数字,11。 这是因为我们可以把整个数字当作一个分数,分母为1。 任何数字,即使是非理性数字,都可以这样处理,这样我们就可以用同样的方法发现一个数字的倍数反转。

    Divide Rational Numbers
    ::分裂性理性数字

    Earlier, we mentioned that multiplying by a number’s reciprocal is the same as dividing by the number. That’s how we can divide rational numbers; to divide by a rational number, just multiply by that number’s reciprocal. In more formal terms:
    ::早些时候,我们曾提到,乘以一个数字的对等乘法与除以数字是相同的。 这就是我们如何区分合理数字;用一个合理数字来除以一个合理数字,只是乘以这个数字的对等乘法。 用更正式的术语说:

    a b ÷ c d = a b × d c .

    ::ab-cd=abxdc。

    Divide the following , giving your answer in the simplest form .
    ::除以下方,以最简单的形式给出答案。

    a) 1 2 ÷ 1 4
    :伤心a) 1214

    Replace 1 4 with 4 1 and multiply: 1 2 × 4 1 = 4 2 = 2 .
    ::以41取代14,乘以12x41=42=2。

    b) 7 3 ÷ 2 3
    :伤心b) 7323

    Replace 2 3 with 3 2 and multiply: 7 3 × 3 2 = 7 3 3 2 = 7 2 .
    ::将23改为32,乘以:73x32=733=72。

    c) x 2 ÷ 1 4 y
    ::c) x214y

    x 2 ÷ 1 4 y = x 2 × 4 y 1 = 4 x y 2 = 2 x y 1 = 2 x y
    ::x214y=x2×4y1=4xy2=2xy1=2xy1=2xy

    d) 11 2 x ÷ ( x y )
    :伤心d) 112x(-xy)

    11 2 x ÷ ( x y ) = 11 2 x × ( y x ) = 11 y 2 x 2
    ::112x(- xy) = 112xxxx(- yx) 11y2x2

    Solve Real-World Problems Using Division
    ::利用司解决现实世界问题

    Speed, Distance and Time
    ::速度、距离和时间

    An object moving at a certain speed will cover a fixed distance in a set time . The quantities speed, distance and time are related through the equation Speed = Distance Time .
    ::以一定速度移动的物体将在固定时间内覆盖固定距离。数量速度、距离和时间通过方程式“速度”=“距离时间”。

    Anne runs a mile and a half in a quarter hour. What is her speed in miles per hour?
    ::Anne在四分之一小时里跑1.5英里 她的速度是每小时1英里多快?

    We already have the distance and time in the correct units (miles and hours), so we just need to write them as fractions and plug them into the equation.
    ::我们已经有了正确的单位(英里和小时)的距离和时间, 所以我们只需要把它们写成分数, 并把它们插进方程中。

    Speed = 1 1 2 1 4 = 3 2 ÷ 1 4 = 3 2 × 4 1 = 3 4 2 1 = 12 2 = 6

    ::速度=11214=3214=32×41=3421=122=6

    Anne runs at 6 miles per hour.
    ::安妮每小时跑6英里

    Examples
    ::实例

    Divide the following rational numbers, giving your answer in the simplest form .
    ::将下列合理数字分开,以最简单的形式回答。

    Example 1
    ::例1

    3 10 ÷ 7 5

    Replace 7 5 with 5 7 and multiply: 3 10 × 5 7 = 15 70 = 3 14 .
    ::将75改为57,乘以:310x57=1570=314。

    Example 2
    ::例2

    9 x 5 ÷ 9 5
    ::9x595

    Replace 9 5 with 5 9 and multiply: 9 x 5 × 5 9 = 45 x 45 = x .
    ::将95改为59,乘以:9x5x59=45x45=x。

    Review 
    ::回顾

    For 1-5, find the multiplicative inverse of each of the following.
    ::1-5, 找到以下每一种的多倍反差 。

    1. 100
    2. 2 8
    3. 19 21
    4. 7
    5. z 3 2 x y 2
      ::- 兹32xy2

    For 6-10, divide the following rational numbers. Write your answer in the simplest form.
    ::6 - 10, 将下列合理数字除以。 请以最简单的形式写下您的答复 。

    1. 5 2 ÷ 1 4
    2. 1 2 ÷ 7 9
    3. 5 11 ÷ 6 7
    4. 1 2 ÷ 1 2
    5. x 2 ÷ 5 7
      ::- x257

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。