2.6 理性数字除法
章节大纲
-
Division of Rational Numbers
::理性数字分割An identity element is a number which, when combined with a mathematical operation on a number, leaves that number unchanged. For example, the identity element for addition and subtraction is zero , because adding or subtracting zero to a number doesn’t change the number. And zero is also what you get when you add together a number and its opposite, like 3 and -3.
::身份元素是一个数字,当与数字上的数学操作相结合时,该数字保持不变。例如,用于添加和减法的识别元素为零,因为对数字的增减零不会改变数字。当将数字和数字相加时,零也是数字,例如3和3和3。Multiplicative Inverses
::倍倍倍倍倍倍数The inverse operation of addition is subtraction—when you add a number and then subtract that same number, you end up back where you started. Also, adding a number’s opposite is the same as subtracting it—for example, is the same as .
::加法的反作用是减法——当您添加一个数字然后再减去同一数字时,你就会回到开始的位置。此外,加法的反向作用与减法相同——例如,4+(-3)与4-3相同。Multiplication and division are also inverse operations to each other—when you multiply by a number and then divide by the same number, you end up back where you started. Multiplication and division also have an identity element: when you multiply or divide a number by one , the number doesn’t change.
::乘法和除法是相互反向的操作,当乘以一个数字,然后除以同一个数字时,最终会回到开始的位置。乘法和除法还有一个特性元素:当乘以一个数字或除以一个数字时,数字不会改变。Just as the opposite of a number is the number you can add to it to get zero, the reciprocal of a number is the number you can multiply it by to get one. And finally, just as adding a number’s opposite is the same as subtracting the number, multiplying by a number’s reciprocal is the same as dividing by the number.
::数字的反面是数字可以加到数字中以获得零,数字的对等性是数字可以通过数字乘以获得一个数字。 最后,数字的对等性与减去数字相同,乘以数字的对等性与除以数字相同。The reciprocal of a number is also called the multiplicative inverse . Any number times its own multiplicative inverse equals one, and the multiplicative inverse of is written as .
::数 x 的对等也称为乘数反。它自己的乘数乘以乘以乘以乘以反等值等于一,而乘以反乘以乘以x 以一。To find the multiplicative inverse of a rational number , we simply invert the fraction —that is, flip it over. In other words:
::为了找到一个合理数字的乘数反,我们只是颠倒了分数,即翻转它。换句话说:The multiplicative inverse of is , as long as .
::ab的倍数反比是巴巴,直到0。You’ll see why in the following exercise.
::你会看到为什么在接下来的练习中。Finding Multiplicative Inverses
::查找多种重复的逆数Find the multiplicative inverse of each of the following.
::查找以下每一种的多倍反差。a)
:a) 37
When we invert the fraction , we get . Notice that if we multiply , the 3’s and the 7’s both cancel out and we end up with , or just 1.
::当我们颠倒第37点时,我们得到73分, 注意如果我们乘以3773分, 3和7分都取消, 我们最后只有11分, 或只有1分。b)
:b) 49
Similarly, the inverse of is ; if we multiply those two fractions together, the 4’s and the 9’s cancel out and we’re left with 1. That’s why the rule “invert the fraction to find the multiplicative inverse” works: the numerator and the denominator always end up canceling out, leaving 1.
::类似地,49的反比是94;如果我们将这两个部分相乘,4个和9个取消,我们只剩下1个,这就是为什么规则 " 颠倒部分以找到多倍反向 " 起作用:分子和分母总是最后取消,留下1个。c)
:c) 312
To find the multiplicative inverse of we first need to convert it to an improper fraction . Three wholes is six halves, so . That means the inverse is .
::要找到312的倍数反差, 我们首先需要将其转换为不适当的分数。 三个整数是六分之一, 所以 312=62+12=72。 这意味着反数是27 。d)
:d)-xy
Don’t let the negative sign confuse you. The multiplicative inverse of a negative number is also negative! Just ignore the negative sign and flip the fraction as usual.
::不要让负面迹象混淆你。 负数的倍数反比也是负数! 只要忽略负数迹象, 照常翻转部分, 就可以了 。The multiplicative inverse of is .
::-xy 的倍增效应为 - yx 。e)
::e) 111The multiplicative inverse of is , or simply 11.
::111的乘数反比为111,或仅11。Look again at the last example. When we took the multiplicative inverse of we got a whole number, 11. That’s because we can treat that whole number like a fraction with a denominator of 1. Any number, even a non-rational one, can be treated this way, so we can always find a number’s multiplicative inverse using the same method.
::再看看最后一个例子。 当我们以111的倍数反转时,我们得到了一个完整的数字,11。 这是因为我们可以把整个数字当作一个分数,分母为1。 任何数字,即使是非理性数字,都可以这样处理,这样我们就可以用同样的方法发现一个数字的倍数反转。Divide Rational Numbers
::分裂性理性数字Earlier, we mentioned that multiplying by a number’s reciprocal is the same as dividing by the number. That’s how we can divide rational numbers; to divide by a rational number, just multiply by that number’s reciprocal. In more formal terms:
::早些时候,我们曾提到,乘以一个数字的对等乘法与除以数字是相同的。 这就是我们如何区分合理数字;用一个合理数字来除以一个合理数字,只是乘以这个数字的对等乘法。 用更正式的术语说:
::ab-cd=abxdc。Divide the following , giving your answer in the simplest form .
::除以下方,以最简单的形式给出答案。a)
:a) 1214
Replace with and multiply: .
::以41取代14,乘以12x41=42=2。b)
:b) 7323
Replace with and multiply: .
::将23改为32,乘以:73x32=733=72。c)
::c) x214y
::x214y=x2×4y1=4xy2=2xy1=2xy1=2xyd)
:d) 112x(-xy)
::112x(- xy) = 112xxxx(- yx) 11y2x2Solve Real-World Problems Using Division
::利用司解决现实世界问题Speed, Distance and Time
::速度、距离和时间An object moving at a certain speed will cover a fixed distance in a set time . The quantities speed, distance and time are related through the equation .
::以一定速度移动的物体将在固定时间内覆盖固定距离。数量速度、距离和时间通过方程式“速度”=“距离时间”。Anne runs a mile and a half in a quarter hour. What is her speed in miles per hour?
::Anne在四分之一小时里跑1.5英里 她的速度是每小时1英里多快?We already have the distance and time in the correct units (miles and hours), so we just need to write them as fractions and plug them into the equation.
::我们已经有了正确的单位(英里和小时)的距离和时间, 所以我们只需要把它们写成分数, 并把它们插进方程中。
::速度=11214=3214=32×41=3421=122=6Anne runs at 6 miles per hour.
::安妮每小时跑6英里Examples
::实例Divide the following rational numbers, giving your answer in the simplest form .
::将下列合理数字分开,以最简单的形式回答。Example 1
::例1Replace with and multiply: .
::将75改为57,乘以:310x57=1570=314。Example 2
::例2
::9x595Replace with and multiply: .
::将95改为59,乘以:9x5x59=45x45=x。Review
::回顾For 1-5, find the multiplicative inverse of each of the following.
::1-5, 找到以下每一种的多倍反差 。- 100
- 7
-
::- 兹32xy2
For 6-10, divide the following rational numbers. Write your answer in the simplest form.
::6 - 10, 将下列合理数字除以。 请以最简单的形式写下您的答复 。-
::- x257
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。