Section outline

  • Applications using Linear Models 
    ::使用线性模型的应用

    S olve word problems using  the equation of a straight line.
    ::使用直线的方程式解决字问题 。

    Real-World Application: Moving Trucks 
    ::真实世界应用程序:移动卡车

    lesson content

    Marciel rented a moving truck for the day. Marciel only remembers that the rental truck company charges $40 per day and some number of cents per mile. Marciel drives 46 miles and the final amount of the bill (before tax) is $63. What is the amount per mile the truck rental company charges? Write an equation in point- form that describes this situation. How much would it cost to rent this truck if Marciel drove 220 miles?
    ::Marciel租了一辆流动卡车。 Marciel只记得租来的卡车公司每天收费40美元,每英里约几美分。 Marciel开的是46英里,账单的最后金额(税前)是63美元。卡车租赁公司每英里收费的金额是多少? 写一个方程式来描述这种情况。如果Marciel开的是220英里,租这辆卡车要花多少钱?

    Let’s define our variables:
    ::让我们定义我们的变数:

    x = distance in miles y = cost of the rental truck

    ::x=英里距离=租车成本

    Marciel pays a flat fee of $40 for the day; this is the y - intercept .
    ::Marciel每天支付40美元的定额费用,这是Y调查。

    He pays $63 for 46 miles; this is the coordinate point (46,63).
    ::他付63美元,46英里;这是坐标点(46,63)。

    Start with the point-slope form of the line: y y 0 = m ( x x 0 )
    ::以线条的点斜体形式开始: y- y0=m( x- x0)

    Plug in the coordinate point: 63 y 0 = m ( 46 x 0 )
    ::坐标点中的插件: 63- y0=m( 46- x0)

    Plug in the point (0, 40): 63 40 = m ( 46 0 )
    ::插插点(0,40):63-40=m(46-0)

    Solve for the slope: 23 = 46 m m = 23 46 = 0.5
    ::坡度: 23= 46mm=2346=0. 5

    The slope is 0.5, so the truck company charges 0.5 dollars, or 50 cents, per mile ($0.5 = 50 cents). Plugging in the slope and the y -intercept, the equation of the line is y = 0.5 x + 40 .
    ::斜坡为0.5,所以卡车公司每英里收费0.5美元或50美分(0.5美元=50美分),在斜坡和y-intercut中插入,线的方程式是y=0.5x+40。

    To find out the cost of driving the truck 220 miles, we substitute 220 for  x  to get y 40 = 0.5 ( 220 ) y = $ 150 .
    ::为了了解卡车220英里的驾驶费用,我们用220英里代替xx,以获得y-40=0.5(220)y=150美元。

    Driving 220 miles would cost $150.
    ::开车220英里需要150美元

    Real-World Application: Sales Commission 
    ::实际世界应用:销售委员会

    Anne got a job selling window shades. She receives a monthly base salary and a $6 commission for each window shade she sells. At the end of the month, she adds up sales and she figures out that she sold 200 window shades and made $2500. Write an equation in point-slope form that describes this situation. Use the equation to determine  Anne’s monthly base salary.
    ::Anne得到了一份销售窗口窗帘的工作。 她每卖一个窗口窗帘都得到每月基本工资和6美元的佣金。 月底,她加了销售额,发现她卖了200个窗口窗帘,赚了2500美元。 用点窗帘形式写一个方程式来描述这种情况。 用方程式来确定Anne的月基本工资。

    First  define the variables:
    ::首先定义变量 :

    x = number of window shades sold y = Anne's earnings

    ::x = 售出的窗帘数= Anne的收入

    You  are given the slope and a point on the line:
    ::给您一个斜坡和线上的一个点 :

    Nadia gets $6 for each shade, so the slope is 6.
    ::Nadia每个阴影6美元,所以斜坡是6美元。

    She made $2500 when she sold 200 shades, so there is a point at (200, 2500).
    ::她卖了200个窗帘,赚了2500美元 所以在200 2500分时有个点

    Start with the point-slope form of the line: y y 0 = m ( x x 0 ) .
    ::开始于线条的点窗体: y- y0=m( x- x0) 。

    Plug in the slope: y y 0 = 6 ( x x 0 ) .
    ::斜坡中的插件:y-y0=6(x-x0)。

    Plug in the point (200, 2500): y 2500 = 6 ( x 200 ) .
    ::插插点 (200, 2500): y-2500=6(x- 200) 。

    To find Anne’s base salary, we plug in x = 0 and get y 2500 = 1200 y = $ 1300.
    ::为了找到安妮的基薪,我们插入x=0,并获得y-25001200y=1300美元。

    Anne’s monthly base salary is $1300.
    ::安妮月基薪为1300美元。

    Real-World Application: Buying Fruit 
    ::真实世界应用程序:购买水果

    Nadia buys fruit at her local farmer’s market. This Saturday, oranges cost $2 per pound and cherries cost $3 per pound. She has $12 to spend on fruit. Write an equation in standard form that describes this situation. If she buys 4 pounds of oranges, how many pounds of cherries can she buy?
    ::Nadia在当地农民市场购买水果。 本周六,橙子每磅2美元,樱桃每磅3美元。 她有12美元用于水果。 她有12美元用于水果。 用标准格式写一个方程式描述这种情况。 如果她购买4磅橙子,她能买多少樱桃?

    Let’s define our variables:
    ::让我们定义我们的变数:

    x = pounds of oranges y = pounds of cherries

    ::x=千吨橘子=磅樱桃

    The equation that describes this situation is 2 x + 3 y = 12.
    ::描述这种情况的方程式是 2x+3y=12。

    If she buys 4 pounds of oranges, we can plug x = 4 into the equation and solve for y :
    ::如果她买4磅橙子 我们可以在方程式中插入 x=4 并解决y:

    2 ( 4 ) + 3 y = 12 3 y = 12 8 3 y = 4 y = 4 3

    ::2(4)+3y=123y=12-83y=4y=43

    Nadia can buy 1 1 3 pounds of cherries.
    ::Nadia可以买113磅樱桃

    Example
    ::示例示例示例示例

    Example 1
    ::例1

    Peter skateboards part of the way to school and walks the rest of the way. He can skateboard at 7 miles per hour and he can walk at 3 miles per hour. The distance to school is 6 miles. Write an equation in standard form that describes this situation. If he skateboards for 1 2 an hour, how long does he need to walk to get to school?
    ::彼得滑板是上学路段的一部分,走剩下的路。他每小时可以滑板7英里,每小时可以行走3英里。上学的距离是6英里。用标准格式写一个方程,描述这种情况。如果他滑板每小时12小时,他需要步行多久才能上学?

    D efine the  variables:
    ::定义变量 :

    x = time Peter skateboards y = time Peter walks

    ::彼得滑板滑板滑板滑板滑雪

    The equation that describes this situation is: 7 x + 3 y = 6.
    ::描述这种情况的方程式是:7x+3y=6。

    Peter skateboards 1 2 an hour, so substitute   x = 0.5 into the equation and solve for y :
    ::彼得滑板每小时12小时, 替换x=0. 5的方程式, 并解决y:

    7 ( 0.5 ) + 3 y = 6 3 y = 6 3.5 3 y = 2.5 y = 5 6

    ::7(0.5)+3y=63y=6-3.53y=2.5y=56

    Peter must walk 5 6 of an hour to get to school.
    ::彼得必须步行56小时才能上学

    Review
    ::回顾

    For 1-8, write the equation in slope-intercept, point-slope and standard forms.
    ::对于 1-8, 以斜度截面、 点斜面和标准格式书写方程式 。

    1. The line has a slope of 2 3 and contains the point ( 1 2 , 1 )
      ::该线的斜坡为23, 包含点( 12, 1) 。
    2. The line has a slope of -1 and contains the point ( 4 5 , 0 )
      ::线的斜度为-1, 包含点( 45,0)
    3. The line has a slope of 2 and contains the point ( 1 3 , 10 )
      ::该线的斜坡为2, 包含点( 13, 10) 。
    4. The line contains points (2, 6) and (5, 0).
      ::该行包含点数(2,6)和点数(5,0)。
    5. The line contains points (5, -2) and (8, 4).
      ::该行包含点数(5,2)和点数(8,4)。
    6. The line contains points (-2, -3) and (-5, 1).
      ::该行包含点数(2、2、3和5、1)。

    For 9-10, solve the problem.
    ::9 -10,解决问题。

    1. Andrew has two part time jobs. One pays $6 per hour and the other pays $10 per hour. He wants to make $366 per week. Write an equation in standard form that describes this situation. If he is only allowed to work 15 hours per week at the $10 per hour job, how many hours does he need to work per week in his $6 per hour job in order to achieve his goal?
      ::安德鲁有两个兼职工作。 一个每小时付6美元,另一个每小时付10美元。 他想每周挣366美元。 以标准格式写一个方程式描述这种情况。 如果只允许他每周工作15小时,每小时工作10美元,那么他每小时工作6美元需要多少小时才能达到目标?
    2. Anne invests money in two accounts. One account returns 5% annual interest and the other returns 7% annual interest. In order not to incur a tax penalty, she can make no more than $400 in interest per year. Write an equation in standard form that describes how much she should invest to earn the maximum interest without penalty. If she invests $5000 in the 5% interest account, how much money can she invest in the other account?
      ::Anne在两个账户中投资。 一个账户回报5%的年度利息,另一个账户回报7%的年度利息。 为了不产生税收处罚,她每年的利息不得超过400美元。 以标准格式写一个方程式,说明她应该投资多少来赚取最高利息而不用罚款。 如果她在5%的利息账户中投资5000美元,她可以投资多少钱去另一个账户?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。