章节大纲

  • Multiplication of Monomials by Polynomials
    ::单体体在多面体中的乘法

    Just as we can add and subtract , we can also multiply them. The and the techniques you’ve learned for dealing with exponents will be useful here.
    ::正如我们可以增减一样,我们也能够乘以它们。 你所学到的对付表率的方法和技巧在这里将很有用。

    Multiplying a Polynomial by a Monomial
    ::以单声道乘以多声道

    When multiplying polynomials, remember the exponent rules , particularly the product rule: x n x m = x n + m .
    ::当乘多数值时,请记住前列规则,特别是产品规则:xnxm=xn+m。

    If the expressions have coefficients and more than one variable , multiply the coefficients just as you  would any number and apply the product rule on each variable separately.
    ::如果表达式有系数和一个以上变量,则与任何数字一样乘以系数,并对每个变量分别适用产品规则。

     

     

    Multiplying Monomials 
    ::乘数单数

    Multiply the following monomials.
    ::乘以下列单数。

    a) ( 2 x 2 ) ( 5 x 3 )
    :伤心a) (2x2(5x3))

    ( 2 x 2 ) ( 5 x 3 ) = ( 2 5 ) ( x 2 x 3 ) = 10 x 2 + 3 = 10 x 5
    :伤心2x2( 5x3) = (2) 5x5) = (x2xx3) = 10x2+3= 10x5

    b) ( 3 y 4 ) ( 2 y 2 )
    :伤心--3y4)(2y2)

    ( 3 y 4 ) ( 2 y 2 ) = ( 3 2 ) ( y 4 y 2 ) = 6 y 4 + 2 = 6 y 6
    :伤心-3y4)(2y2)=(-32) (y4y2) 6y4+26y6)

    c) ( 3 x y 5 ) ( 6 x 4 y 2 )
    :伤心c) (3xy5)(-6x4y2)

    ( 3 x y 5 ) ( 6 x 4 y 2 ) = 18 x 1 + 4 y 5 + 2 = 18 x 5 y 7
    :伤心3xy5 (- 6x4y2) 18x1+4y5+218x5y7)

    d) ( 12 a 2 b 3 c 4 ) ( 3 a 2 b 2 )
    :伤心d) (-12a2b3c4)(-3a2b2)

    ( 12 a 2 b 3 c 4 ) ( 3 a 2 b 2 ) = 36 a 2 + 2 b 3 + 2 c 4 = 36 a 4 b 5 c 4
    :伤心-12a2b3c4)(-3a2b2)=36a2+2b3+2c4=36a4b5c4)

    To multiply a polynomial by a monomial , use the Distributive Property . Remember, that property says that a ( b + c ) = a b + a c .
    ::要将一个多数值乘以单数值, 请使用分配属性。 记住, 该属性表示 a( b+c) =ab+ac 。

    Using the Distributive Property 
    ::使用分配财产

    1. Multiply:
    ::1. 乘以:

    a) 3 ( x 2 + 3 x 5 )
    :伤心a) 3(x2+3x-5)

    3 ( x 2 + 3 x 5 ) = 3 ( x 2 ) + 3 ( 3 x ) 3 ( 5 ) = 3 x 2 + 9 x 15
    ::3(x2+3x-5)=3(x2)+3(3x)-3(5)=3x2+9x-15

    b) 4 x ( 3 x 2 7 )
    :伤心b) 4x(3x2-7)

    4 x ( 3 x 2 7 ) = ( 4 x ) ( 3 x 2 ) + ( 4 x ) ( 7 ) = 12 x 3 28 x
    ::4x(3x2-7)=(4x(3x2)+(4x(7)=12x3-28x)

    c) 7 y ( 4 y 2 2 y + 1 )
    ::c)-7y(4y2-2y+1)

    7 y ( 4 y 2 2 y + 1 ) = ( 7 y ) ( 4 y 2 ) + ( 7 y ) ( 2 y ) + ( 7 y ) ( 1 ) = 28 y 3 + 14 y 2 7 y

    ::-7y(4y2-2y+1)=(-7y(4y2)+(-7y)(-2y)+(-7y)(-7y)(-7y)+(-7y)(1)28y3+14y2-7yy

    Notice that when you  use the Distributive Property, the problem becomes a matter of just multiplying monomials by monomials and adding all the separate parts together.
    ::请注意,当您使用分配财产时,问题就变成了将单项财产乘以单项财产,并将所有单独的部分加在一起的问题。

    2. Multiply:
    ::2. 乘以:

    a) 2 x 3 ( 3 x 4 + 2 x 3 10 x 2 + 7 x + 9 )
    :伤心a) 2x3(- 3x4+2x3- 10x2+7x+9)

    2 x 3 ( 3 x 4 + 2 x 3 10 x 2 + 7 x + 9 ) = ( 2 x 3 ) ( 3 x 4 ) + ( 2 x 3 ) ( 2 x 3 ) + ( 2 x 3 ) ( 10 x 2 ) + ( 2 x 3 ) ( 7 x ) + ( 2 x 3 ) ( 9 ) = 6 x 7 + 4 x 6 20 x 5 + 14 x 4 + 18 x 3

    ::2x3(- 3x4+2x3- 2x3- 10x2+7x+9) =( 2x3)(-3x4) +( 2x3)( 2x3) +( 2x3)( - 10x3) +( 2x3)( 7x) +(2x3)( 9) 6x7+4x6-205+14x4+18x3)

    b) 7 a 2 b c 3 ( 5 a 2 3 b 2 9 c 2 )
    ::b)-7a2bc3(5a2-3b2-9c2)


    7 a 2 b c 3 ( 5 a 2 3 b 2 9 c 2 ) = ( 7 a 2 b c 3 ) ( 5 a 2 ) + ( 7 a 2 b c 3 ) ( 3 b 2 ) + ( 7 a 2 b c 3 ) ( 9 c 2 ) = 35 a 4 b c 3 + 21 a 2 b 3 c 3 + 63 a 2 b c 5

    ::-7a2bc3(5a2-3b2-9c2)=(-7a2bc3(5a2)+(-7a2bc3)(-3b2)+(-7a2bc3)(-3b2)+(-7a2bc3)(-9c2)+(-3a2bc3)(-9c2)+(35a4bc3+21a2b3c3+63a2c5)

     

     

    Example
    ::示例示例示例示例

    Example 1
    ::例1

    Multiply 2 a 2 b 4 ( 3 a b 2 + 7 a 3 b 9 a + 3 ) .
    ::乘以-2a2b4(3ab2+7a3b-9a+3)

    Multiply the monomial by each term inside the parenthesis:
    ::以括号内的每个词乘以单数 :

    2 a 2 b 4 ( 3 a b 2 + 7 a 3 b 9 a + 3 ) = ( 2 a 2 b 4 ) ( 3 a b 2 ) + ( 2 a 2 b 4 ) ( 7 a 3 b ) + ( 2 a 2 b 4 ) ( 9 a ) + ( 2 a 2 b 4 ) ( 3 ) = 6 a 3 b 6 14 a 5 b 5 + 18 a 3 b 4 6 a 2 b 4

    ::-2a2b4(3ab2+7a3b-9a+3)=(-2a2b4(3ab2)+(-2a2b4)+(-2a2b4(7a3b)+(-2a2b4(9a)+(-2a2b4)(9a)+(-2a2b4)(3)*6a3b6-14a5b5+18a3b4-6a2b4)

    Review 
    ::回顾

    Multiply the following monomials.
    ::乘以下列单数。

    1. ( 2 x ) ( 7 x )
      :伤心2x)(-7x)
    2. ( 10 x ) ( 3 x y )
      :伤心10x( 3xy))
    3. ( 4 m n ) ( 0.5 n m 2 )
      :伤心4mn)(0.50nm2)
    4. ( 5 a 2 b ) ( 12 a 3 b 3 )
      :伤心-5a2b)(-12a3b3)
    5. ( 3 x y 2 z 2 ) ( 15 x 2 y z 3 )
      :伤心3xy2z2)(15x2yz3)

    Multiply and simplify.
    ::乘数和简化。

    1. 17 ( 8 x 10 )
      ::17(8x-10)
    2. 2 x ( 4 x 5 )
      ::2x(4x-5)
    3. 9 x 3 ( 3 x 2 2 x + 7 )
      ::9x3( 3x2 - 2x+7)
    4. 3 x ( 2 y 2 + y 5 )
      ::3x( 2y2+y- 5)
    5. 10 q ( 3 q 2 r + 5 r )
      ::10q(3q2r+5r)
    6. 3 a 2 b ( 9 a 2 4 b 2 )
      ::- 3a2b(9a2-4b2)

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。