章节大纲

  • Factorization of Quadratic Expressions
    ::二次曲线表达式的量化

    Quadratic polynomials are polynomials of the 2 n d degree . The standard form of a quadratic polynomial is written as
    ::二次二次多面性是第二度的多面性。二次多面性的标准形式是:

    a x 2 + b x + c

    ::ax2+bx+c 轴x2+bx+c

    where a , b , and c stand for constant numbers. Factoring these polynomials depends on the values of these constants. In this section we’ll learn how to factor quadratic polynomials for different values of a , b , and c . (When none of the coefficients are zero, these expressions are also called quadratic trinomials , since they are polynomials with three terms .)
    ::a, b, c 代表不变数值。 计算这些多数值取决于这些常数的值。 在本节中,我们将学习如何将a, b 和 c 等值的不同值乘以二次多数值。 (当没有一个系数为零时,这些表达也被称为二次三数值,因为它们是三术语的多元数。 )

    You’ve already learned how to factor quadratic polynomials where c = 0 . For example, for the quadratic a x 2 + b x , the common factor is x and this expression is factored as x ( a x + b ) . Now we’ll see how to factor quadratics where c is nonzero.
    ::您已经学会了如何在 c=0 的地方将四边形多面体乘以。 例如,对于四方轴2+bx, 共同系数是 x, 这个表达式被乘以 x( 轴+b ) 。 现在我们可以看到如何在 c 不为零的情况下将二次形因素乘以 。

    Factor when a = 1, b is Positive, and c is Positive
    ::当 a = 1, b = 阳, c = 阳时的乘数

    First, let’s consider the case where a = 1 , b is positive and c is positive. The quadratic trinomials will take the form
    ::首先,让我们考虑a=1,b是正数,c是正数。

    x 2 + b x + c

    ::x2+bx+c x2+bx+c

    You know from multiplying binomials that when you multiply two factors ( x + m ) ( x + n ) , you get a quadratic polynomial. Let’s look at this process in more detail. First we use distribution:
    ::从乘以二进制中可以知道,当乘以两个因数( x+m ( x+n)) 时,你就会得到一个四边形的多面体。让我们更详细地看一下这个过程。 我们首先使用分布法 :

    ( x + m ) ( x + n ) = x 2 + n x + m x + m n

    :伤心x+m(x+n)=x2+nx+mx+mn)

    Then we simplify by combining the like terms in the middle. We get:
    ::然后我们把类似条件合并到中间来简化。我们得到:

    ( x + m ) ( x + n ) = x 2 + ( n + m ) x + m n

    :伤心x+m)(x+n)=x2+(n+m)x+mn

    So to factor a quadratic, we just need to do this process in reverse.
    ::因此,为了将二次方位乘法,我们只需要将这一过程倒转。

    We see that   x 2 + ( n + m ) x + m n is the same form as x 2 + b x + c

    ::我们看到 x2+(n+m) x+mnis 和 x2+bx+c 一样的窗体

    This means that we need to find two numbers m and n where
    ::这意味着我们需要找到两个数字m和n

    n + m = b and m n = c

    ::n+m=bandmn=c = bandmn=c = n+m=bandmn=c

    The factors of x 2 + b x + c are always two binomials
    ::x2+bxx+c的因数总是两个二进制

    ( x + m ) ( x + n )

    :伤心x+m(x+n))

    such that n + m = b and m n = c .
    ::n+m=b和mn=c。

    Factoring
    ::保理

    1. Factor x 2 + 5 x + 6 .
    ::1. 系数x2+5x+6。

    We are looking for an answer that is a product of two binomials in " data-term="Parentheses" role="term" tabindex="0"> parentheses :
    ::我们正在寻找一个答案,这是括号中两个二项概念的产物:

    ( x ) ( x )

    :伤心x)(x)

    We want two numbers m and n that multiply to 6 and add up to 5. A good strategy is to list the possible ways we can multiply two numbers to get 6 and then see which of these numbers add up to 5:
    ::我们要两个数字 m 和 n , 乘以 6 和 5 。 一个好的策略是列出 我们乘以两个数字 可能的方法 来达到 6 , 然后看看其中哪个数字加到 5 :

    6 = 1 6 and 1 + 6 = 7 6 = 2 3 and 2 + 3 = 5 T h i s   i s   t h e   c o r r e c t   c h o i c e .

    ::6=16和1+6=76=23和2+3=5 这是正确的选择 。

    So the answer is ( x + 2 ) ( x + 3 ) .
    ::答案是 (x+2)(x+3) 。

    We can check to see if this is correct by multiplying ( x + 2 ) ( x + 3 ) :
    ::我们可以通过乘( x+2)( x+3) 来检查是否正确 :

    x + 2 x + 3 _   3 x + 6 x 2 + 2 x _ x 2 + 5 x + 6

    ::x+2x+3_ 3x+6x2+2xx2+5x+6

    The answer checks out.
    ::答案检查出来。

    2. Factor x 2 + 7 x + 12 .
    ::2. 系数x2+7x+12。

    We are looking for an answer that is a product of two binomials in parentheses: ( x ) ( x )
    ::我们正在寻找一个答案,这是括号中两个二项概念的产物伤心x)(x)

    The number 12 can be written as the product of the following numbers:
    ::12号可以写成以下数字的产物:

    12 = 1 12 and 1 + 12 = 13 12 = 2 6 and 2 + 6 = 8 12 = 3 4 and 3 + 4 = 7 T h i s   i s   t h e   c o r r e c t   c h o i c e .

    ::12=112和1+12=1312=26和2+6=812=34和3+4=7 这是正确的选择。

    The answer is ( x + 3 ) ( x + 4 ) .
    ::答案是 (x+3)(x+4) 。

    3. Factor x 2 + 8 x + 12 .
    ::3. 系数x2+8x+12。

    We are looking for an answer that is a product of two binomials in parentheses: ( x ) ( x )
    ::我们正在寻找一个答案,这是括号中两个二项概念的产物伤心x)(x)

    The number 12 can be written as the product of the following numbers:
    ::12号可以写成以下数字的产物:

    12 = 1 12 and 1 + 12 = 13 12 = 2 6 and 2 + 6 = 8 T h i s   i s   t h e   c o r r e c t   c h o i c e . 12 = 3 4 and 3 + 4 = 7

    ::12=112和1+12=1312=26和2+6=8 这是正确的选择 12=34和3+4=7

    The answer is ( x + 2 ) ( x + 6 ) .
    ::答案是 (x+2)(x+6) 。

    Example
    ::示例示例示例示例

    Example 1
    ::例1

    Factor x 2 + 12 x + 36 .
    ::系数 x2+12x+36。

    We are looking for an answer that is a product of two binomials in parentheses: ( x ) ( x )
    ::我们正在寻找一个答案,这是括号中两个二项概念的产物伤心x)(x)

    The number 36 can be written as the product of the following numbers:
    ::36号可以写成以下数字的产物:

    36 = 1 36 and 1 + 36 = 37 36 = 2 18 and 2 + 18 = 20 36 = 3 12 and 3 + 12 = 15 36 = 4 9 and 4 + 9 = 13 36 = 6 6 and 6 + 6 = 12 T h i s   i s   t h e   c o r r e c t   c h o i c e .

    ::36=1*36和1+36=3736=2*18和2+18=2036=3*12和3+12=1536=4*9和4+9=1336=6*6和6+6=12 这是正确的选择。

    The answer is ( x + 6 ) ( x + 6 ) .
    ::答案是 (x+6)(x+6) 。

    Review 
    ::回顾

    Factor the following quadratic polynomials.
    ::乘以以下四边形多面体。

    1. x 2 + 10 x + 9
      ::x2+10x+9
    2. x 2 + 15 x + 50
      ::x2+15x+50
    3. x 2 + 10 x + 21
      ::x2+10x+21
    4. x 2 + 16 x + 48
      ::x2+16x+48
    5. x 2 + 14 x + 45
      ::x2+14x+45
    6. x 2 + 15 x + 50
      ::x2+15x+50
    7. x 2 + 22 x + 40
      ::x2+22x+40
    8. x 2 + 15 x + 56
      ::x2+15x+56
    9. x 2 + 2 x + 1
      ::x2+2x+1
    10. x 2 + 10 x + 24
      ::x2+10x+24
    11. x 2 + 17 x + 72
      ::x2+17x+72
    12. x 2 + 25 x + 150
      ::x2+25x+150

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。