9.9 具有负系数的赤道表达物的量化
章节大纲
-
Factorization of Quadratic Expressions with Negative Coefficients
::负系数对具有负系数的赤道表达式进行分化Factor a quadratic trinomial when a = 1, b is negative and c is positive
::a = 1,b为负,c为正的二次三角数乘数Now let’s see how this method works if the middle coefficient is negative.
::现在让我们看看如果中位系数为负数,Factor .
::系数 x2 - 6x+8We are looking for an answer that is a product of two binomials in " data-term="Parentheses" role="term" tabindex="0"> parentheses :
::我们正在寻找一个答案,这是括号中两个二项概念的产物x)(x)
When negative coefficients are involved, we have to remember that negative factors may be involved also. The number 8 can be written as the product of the following numbers:
::当涉及负系数时,我们必须记住也可能涉及消极因素。
::8=18和1+8=9but also
::并同时
::8=(-1)__(-8)和-1+(-8)_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________and
::和
::8=24和2+4=6but also
::并同时
::8=(-2)-(-4)和-2+(-4)-6。The last option is the correct choice. The answer is . We can check to see if this is correct by multiplying :
::最后一个选项是正确选择。 答案是 (x-2)(x- 4) , 我们可以检查乘( x-2)(x- 4) 是否正确 :
::x-2x-4_ - 4x+8x2 - 2x_x2 - 6x+8The answer checks out.
::答案检查出来。Factoring
::保理1. Factor .
::1. 系数x2-17x+16。We are looking for an answer that is a product of two binomials in parentheses:
::我们正在寻找一个答案,这是括号中两个二项概念的产物x)(x)
The number 16 can be written as the product of the following numbers:
::数字16可以写成以下数字的产物:
::16=116和1+1+16=1716=(-1)_(-16)和-1+(-16)_17(更正选择)16=28和2+8=1016=(-2)_(-8)和-2+(-8)_(1016)=44和4+4=816=(-4)_(-4)_(-4)和-4+(-4)_8The answer is .
::答案是(x-1)(x-16)。In general, whenever is negative and and are positive, the two binomial factors will have minus signs instead of plus signs.
::一般而言,当b为负数,a和c为正数时,两个二元因素将具有减号而不是加号。Factor when a = 1 and c is Negative
::=1和c为负时的因数Now let’s see how this method works if the constant term is negative.
::现在让我们来看看如果常数为负值时该方法如何运作。2. Factor .
::2. 系数x2+2x-15。We are looking for an answer that is a product of two binomials in parentheses:
::我们正在寻找一个答案,这是括号中两个二项概念的产物x)(x)
Once again, we must take the negative sign into account. The number -15 can be written as the product of the following numbers:
::再次,我们必须考虑到负号。数字 -15可以写成为下列数字的产物:
::-15115和-1+1+15=14-15=1(-15)和1+(-15)14-151535和-3+5=2(更正选择)-15=3(-5)和3+(-5)2The answer is .
::答案是(x-3)(x+5)。We can check to see if this is correct by multiplying:
::我们可以通过乘法检查是否正确:
::- 3x+5_5x-15x2-3xxx2+2x-15The answer checks out.
::答案检查出来。3. Factor .
::3. 系数x2-10x-24。We are looking for an answer that is a product of two binomials in parentheses:
::我们正在寻找一个答案,这是括号中两个二项概念的产物x)(x)
The number -24 can be written as the product of the following numbers:
::数字 - 24 可以写成为下列数字的产物:
::- 24124和-1+24=23-24=1(24)和1+(24) +(24) 23-2212和-2-2+12=10-24=2(12)和2+(12)和2+(12) 10(Correct choose) -24__38和3+8=5-24=3__(8)和3+3+(8) 524 _46和4+6=2-24=4}(-6)和4+(-6)The answer is .
::答案是 (x-12)(x+2) 。Factor when a = - 1
::a = - 1 时的因数When , the best strategy is to factor the common factor of -1 from all the terms in the quadratic polynomial and then apply the methods you learned so far in this section
::a1 1 时,最好的战略是从四边多元度中的所有术语中乘以 -1 的共同系数,然后运用本节中迄今学到的方法。4. Factor .
::4. 系数-x2+x+6。First factor the common factor of -1 from each term in the trinomial. Factoring -1 just changes the signs of each term in the expression :
::第一个系数是三进制中每个术语的 - 1 的共同系数。乘数 - 1 只是改变表达式中每个术语的符号 :
::-x2+x+6(x2-x-6)We’re looking for a product of two binomials in parentheses:
::我们正在寻找括号中两个二进制的产物x)(x)
Now our job is to factor .
::现在我们的工作是乘以乘数 x2 - x - 6。The number -6 can be written as the product of the following numbers:
::数字 - 6 可以写成以下数字的产物:
::-616和-1+6+6=5-6=1(-6)和1+(-6)5-623和-2+3=1-6=2(-3)和2+2+(-3)+1(更正选择)The answer is .
::答案是-(x-3)(x+2)。Example
::示例示例示例示例Example 1
::例1Factor .
::系数 x2+34x-35。We are looking for an answer that is a product of two binomials in parentheses:
::我们正在寻找一个答案,这是括号中两个二项概念的产物x)(x)
The number -35 can be written as the product of the following numbers:
::编号 - 35 可以是以下数字的产物:
::-=35=5=5=5=5=5(-7)和5+(-7)+5+(-7)=2The answer is .
::答案是(x-1)(x+35)。Review
::回顾Factor the following quadratic polynomials.
::乘以以下四边形多面体。-
::x2 - 11x+24 -
::x2 - 13x+42 -
::x2 - 14x+33 -
::x2-9x+20 x2 - 9x+20 -
::x2+5x-14 -
::x2+6x- 27 x2+6x- 27 -
::x2+7x-78 -
::x2+4x-32 -
::x2 - 12x- 45 -
::x2 - 5x- 50 -
::x2 - 3x- 40 -
::x2 - x - 56 级 -
::-x2-2-2x-1 -
::−x2-5x+24 -
::-x2+18x-72 -
::-x2+25x-150 -
::x2+21x+108 -
::-x2+11x-30 -
::x2+12x-64 -
::x2 - 17x- 60 -
::x2+5x-36 x2+5x-36
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -