章节大纲

  • Factorization of Quadratic Expressions with Negative Coefficients
    ::负系数对具有负系数的赤道表达式进行分化

    Factor a quadratic trinomial when a = 1, b is negative and c is positive
    ::a = 1,b为负,c为正的二次三角数乘数

    Now let’s see how this method works if the middle coefficient is negative.
    ::现在让我们看看如果中位系数为负数,

    Factor x 2 6 x + 8 .
    ::系数 x2 - 6x+8

    We are looking for an answer that is a product of two binomials in " data-term="Parentheses" role="term" tabindex="0"> parentheses : ( x ) ( x )
    ::我们正在寻找一个答案,这是括号中两个二项概念的产物伤心x)(x)

    When negative coefficients are involved, we have to remember that negative factors may be involved also. The number 8 can be written as the product of the following numbers:
    ::当涉及负系数时,我们必须记住也可能涉及消极因素。

    8 = 1 8 and 1 + 8 = 9

    ::8=18和1+8=9

    but also
    ::并同时

    8 = ( 1 ) ( 8 ) and 1 + ( 8 ) = 9

    ::8=(-1)__(-8)和-1+(-8)_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    and
    ::和

    8 = 2 4 and 2 + 4 = 6

    ::8=24和2+4=6

    but also
    ::并同时

    8 = ( 2 ) ( 4 ) and 2 + ( 4 ) = 6.

    ::8=(-2)-(-4)和-2+(-4)-6。

    The last option is the correct choice. The answer is ( x 2 ) ( x 4 ) . We can check to see if this is correct by multiplying ( x 2 ) ( x 4 ) :
    ::最后一个选项是正确选择。 答案是 (x-2)(x- 4) , 我们可以检查乘( x-2)(x- 4) 是否正确 :

    x 2 x 4 _     4 x + 8 x 2   2 x _ x 2   6 x + 8

    ::x-2x-4_ - 4x+8x2 - 2x_x2 - 6x+8

    The answer checks out.
    ::答案检查出来。

    Factoring
    ::保理

    1. Factor x 2 17 x + 16 .
    ::1. 系数x2-17x+16。

    We are looking for an answer that is a product of two binomials in parentheses: ( x ) ( x )
    ::我们正在寻找一个答案,这是括号中两个二项概念的产物伤心x)(x)

    The number 16 can be written as the product of the following numbers:
    ::数字16可以写成以下数字的产物:

    16 = 1 16 and 1 + 16 = 17 16 = ( 1 ) ( 16 ) and 1 + ( 16 ) = 17 ( C o r r e c t   c h o i c e ) 16 = 2 8 and 2 + 8 = 10 16 = ( 2 ) ( 8 ) and 2 + ( 8 ) = 10 16 = 4 4 and 4 + 4 = 8 16 = ( 4 ) ( 4 ) and 4 + ( 4 ) = 8

    ::16=116和1+1+16=1716=(-1)_(-16)和-1+(-16)_17(更正选择)16=28和2+8=1016=(-2)_(-8)和-2+(-8)_(1016)=44和4+4=816=(-4)_(-4)_(-4)和-4+(-4)_8

    The answer is ( x 1 ) ( x 16 ) .
    ::答案是(x-1)(x-16)。

    In general, whenever b is negative and a and c are positive, the two binomial factors will have minus signs instead of plus signs.
    ::一般而言,当b为负数,a和c为正数时,两个二元因素将具有减号而不是加号。

    Factor when a = 1 and c is Negative
    ::=1和c为负时的因数

    Now let’s see how this method works if the constant term is negative.
    ::现在让我们来看看如果常数为负值时该方法如何运作。

    2. Factor x 2 + 2 x 15 .
    ::2. 系数x2+2x-15。

    We are looking for an answer that is a product of two binomials in parentheses: ( x ) ( x )
    ::我们正在寻找一个答案,这是括号中两个二项概念的产物伤心x)(x)

    Once again, we must take the negative sign into account. The number -15 can be written as the product of the following numbers:
    ::再次,我们必须考虑到负号。数字 -15可以写成为下列数字的产物:

    15 = 1 15 and 1 + 15 = 14 15 = 1 ( 15 ) and 1 + ( 15 ) = 14 15 = 3 5 and 3 + 5 = 2 ( C o r r e c t   c h o i c e ) 15 = 3 ( 5 ) and 3 + ( 5 ) = 2

    ::-15115和-1+1+15=14-15=1(-15)和1+(-15)14-151535和-3+5=2(更正选择)-15=3(-5)和3+(-5)2

    The answer is ( x 3 ) ( x + 5 ) .
    ::答案是(x-3)(x+5)。

    We can check to see if this is correct by multiplying:
    ::我们可以通过乘法检查是否正确:

        x   3 x + 5 _ 5 x 15 x 2 3 x _ x 2 + 2 x 15

    ::- 3x+5_5x-15x2-3xxx2+2x-15

    The answer checks out.
    ::答案检查出来。

    3. Factor x 2 10 x 24 .
    ::3. 系数x2-10x-24。

    We are looking for an answer that is a product of two binomials in parentheses: ( x ) ( x )
    ::我们正在寻找一个答案,这是括号中两个二项概念的产物伤心x)(x)

    The number -24 can be written as the product of the following numbers:
    ::数字 - 24 可以写成为下列数字的产物:

    24 = 1 24 and 1 + 24 = 23 24 = 1 ( 24 ) and 1 + ( 24 ) = 23 24 = 2 12 and 2 + 12 = 10 24 = 2 ( 12 ) and 2 + ( 12 ) = 10 ( C o r r e c t   c h o i c e ) 24 = 3 8 and 3 + 8 = 5 24 = 3 ( 8 ) and 3 + ( 8 ) = 5 24 = 4 6 and 4 + 6 = 2 24 = 4 ( 6 ) and 4 + ( 6 ) = 2

    ::- 24124和-1+24=23-24=1(24)和1+(24) +(24) 23-2212和-2-2+12=10-24=2(12)和2+(12)和2+(12) 10(Correct choose) -24__38和3+8=5-24=3__(8)和3+3+(8) 524 _46和4+6=2-24=4}(-6)和4+(-6)

    The answer is ( x 12 ) ( x + 2 ) .
    ::答案是 (x-12)(x+2) 。

    Factor when a = - 1
    ::a = - 1 时的因数

    When a = 1 , the best strategy is to factor the common factor of -1 from all the terms in the quadratic polynomial and then apply the methods you learned so far in this section
    ::a1 1 时,最好的战略是从四边多元度中的所有术语中乘以 -1 的共同系数,然后运用本节中迄今学到的方法。

    4. Factor x 2 + x + 6 .
    ::4. 系数-x2+x+6。

    First factor the common factor of -1 from each term in the trinomial. Factoring -1 just changes the signs of each term in the expression :
    ::第一个系数是三进制中每个术语的 - 1 的共同系数。乘数 - 1 只是改变表达式中每个术语的符号 :

    x 2 + x + 6 = ( x 2 x 6 )

    ::-x2+x+6(x2-x-6)

    We’re looking for a product of two binomials in parentheses: ( x ) ( x )
    ::我们正在寻找括号中两个二进制的产物伤心x)(x)

    Now our job is to factor x 2 x 6 .
    ::现在我们的工作是乘以乘数 x2 - x - 6。

    The number -6 can be written as the product of the following numbers:
    ::数字 - 6 可以写成以下数字的产物:

    6 = 1 6 and 1 + 6 = 5 6 = 1 ( 6 ) and 1 + ( 6 ) = 5 6 = 2 3 and 2 + 3 = 1 6 = 2 ( 3 ) and 2 + ( 3 ) = 1 ( C o r r e c t   c h o i c e )

    ::-616和-1+6+6=5-6=1(-6)和1+(-6)5-623和-2+3=1-6=2(-3)和2+2+(-3)+1(更正选择)

    The answer is ( x 3 ) ( x + 2 ) .
    ::答案是-(x-3)(x+2)。

    Example
    ::示例示例示例示例

    Example 1
    ::例1

    Factor x 2 + 34 x 35 .
    ::系数 x2+34x-35。

    We are looking for an answer that is a product of two binomials in parentheses: ( x ) ( x )
    ::我们正在寻找一个答案,这是括号中两个二项概念的产物伤心x)(x)

    The number -35 can be written as the product of the following numbers:
    ::编号 - 35 可以是以下数字的产物:

    35 = 1 35 and 1 + 35 = 34 ( C o r r e c t   c h o i c e ) 35 = 1 ( 35 ) and 1 + ( 35 ) = 34 35 = 5 7 and 5 + 7 = 2 35 = 5 ( 7 ) and 5 + ( 7 ) = 2

    ::-=35=5=5=5=5=5(-7)和5+(-7)+5+(-7)=2

    The answer is ( x 1 ) ( x + 35 ) .
    ::答案是(x-1)(x+35)。

    Review 
    ::回顾

    Factor the following quadratic polynomials.
    ::乘以以下四边形多面体。

    1. x 2 11 x + 24
      ::x2 - 11x+24
    2. x 2 13 x + 42
      ::x2 - 13x+42
    3. x 2 14 x + 33
      ::x2 - 14x+33
    4. x 2 9 x + 20
      ::x2-9x+20 x2 - 9x+20
    5. x 2 + 5 x 14
      ::x2+5x-14
    6. x 2 + 6 x 27
      ::x2+6x- 27 x2+6x- 27
    7. x 2 + 7 x 78
      ::x2+7x-78
    8. x 2 + 4 x 32
      ::x2+4x-32
    9. x 2 12 x 45
      ::x2 - 12x- 45
    10. x 2 5 x 50
      ::x2 - 5x- 50
    11. x 2 3 x 40
      ::x2 - 3x- 40
    12. x 2 x 56
      ::x2 - x - 56 级
    13. x 2 2 x 1
      ::-x2-2-2x-1
    14. x 2 5 x + 24
      ::−x2-5x+24
    15. x 2 + 18 x 72
      ::-x2+18x-72
    16. x 2 + 25 x 150
      ::-x2+25x-150
    17. x 2 + 21 x + 108
      ::x2+21x+108
    18. x 2 + 11 x 30
      ::-x2+11x-30
    19. x 2 + 12 x 64
      ::x2+12x-64
    20. x 2 17 x 60
      ::x2 - 17x- 60
    21. x 2 + 5 x 36
      ::x2+5x-36 x2+5x-36

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。