Section outline

  • lesson content

    Robbie is building a base for a cylindrical fan to put in his room. The truncated cone has a larger radius of 3 feet, a smaller radius of 2 feet, and a slant height of 3 ft. He is going to paint the stand and needs to find the of the base to figure out how much paint to buy. How can Robbie figure out the surface area?
    ::Robbie正在建立一个基础,让圆柱形扇子放入他的房间。 短锥体的半径大为3英尺,小半径小为2英尺,斜坡高为3英尺。 他将画一个摊位, 并且需要找到底座来弄清楚要买多少油漆。 Robbie如何找到表面面积?

    lesson content

    In this concept, you will learn to find the surface area cones and truncated cones.
    ::在这个概念中,你会学会找到表层的圆锥和短短的圆锥。

    Surface Area
    ::地表地区

    Cones are three-dimensional figures that have a circular base and a point at the top. You can calculate the surface area of a cone using a or a formula. Surface area is the total of the areas of each face in a .
    ::锥体是三维的图形,其圆形基数和顶部的点数。您可以使用公式或公式计算锥体的表面区域。表面区域是每个面孔在一面的总面积。

    Here is what the net of a cone would look like.
    ::这就是锥形网的长相。

    lesson content

    The shaded circle is the base. Remember, cones always have circular bases. The un-shaded portion of the cone represents its side. Technically you don’t call this a face because it has a round edge .
    ::阴影圆是底盘。 记住, 锥形总是有圆形的基座。 锥形的未遮盖部分代表其侧面。 技术上说,你不会将此称为面孔,因为它有一个圆边。

    To find the surface area of a cone, you need to calculate the area of the circular base and the side and add them together. The formula for finding the area of a circle is A = π r 2 , where r  is the radius of the circle. You use this formula to find the area of the circular base.
    ::要找到圆锥形的表面区域, 您需要计算圆锥形基座和侧面的区域, 并把它们加在一起。 查找圆锥形区域的公式是 Ar2, 其中 r 是圆形的半径。 您使用此公式来查找圆圆基的面积 。

    To find the area of the cone’s side, you multiply the radius ( r ), the slant height ( s ), and π .
    ::要找到锥形侧的面积,您要乘以半径(r)、倾斜高度(s)和。

    A = π r s
    ::阿尔斯

    Let’s look at an example.
    ::让我们举个例子。

    Find the surface area of the following cone.
    ::查找以下锥体的表面区域 。

    lesson content

    First, calculate the area of the base.
    ::首先,计算基数的面积。

    A = π r 2 A = π ( 5 ) 2 A = 78.5

    ::2A(5)2A=78.5

    Next, calculate the area of the sector , also known as the lateral surface area .
    ::接下来,计算部门面积,也称为平面表面积。

    A = π ( 5 ) ( 11.7 ) A = 183.8

    ::A(5)(11.7)A=183.8

    Then, add the area of the base to the lateral surface area.
    ::然后,在横向表面区域中加上基座区域。

    A = base + lateral Surface A = 78.5 + 183.8 A = 262.3

    ::A=基数+边面A=78.5+183.8A=262.3

    The answer is 262.3.
    ::答案是262.3。

    The surface area of the cone is 262.3   i n 2 .
    ::锥体的表面面积为2英寸262.3。

    A short cut would be to simply use the formula to find the surface area of a cone. Here is the formula for finding the surface area of a cone: S A = π r 2 + π r s .
    ::捷径是简单地使用公式来找到锥体的表面区域。 这是找到锥体的表面区域的公式: SAr2rs。

    The first part of the formula, π r 2 , is simply the area formula for circles. This represents the base area. The second part, π r s , represents the lateral surface area of the cone’s side. You can simply put the pieces together and solve for the area of both parts at once.
    ::公式的第一部分, °r2, 仅仅是圆形的面积公式。 它代表基区。 第二部分, °rs, 代表锥体侧的横向表面区域。 您可以将两部分的面积同时拼凑和解决。

    A truncated cone is one where the point of the cone is cut off leaving two circular bases and a side face.
    ::短短的圆锥是一个断开圆锥点的圆锥,留下两个圆圆基和一个侧面。

    Below is an image of what a truncated cone looks like.
    ::下面是被截断的锥形的图象。

    lesson content

    Notice that with a truncated cone you will have two different circular bases - a top radius and a bottom one. You will have to find the area of both bases plus the area of the sector to find the surface area.
    ::请注意, 使用短圆锥形, 您将有两个不同的圆形基座—— 上半径和下半径。 您必须找到两个基座的面积, 加上扇区的区域, 才能找到表面区域 。

    The formula for finding the surface area of a truncated cone is:
    ::寻找短洞锥体表面面积的公式是:

    S A = π [ s ( R + r ) + R 2 + r 2 ]
    ::SA[s(R+r)+R2+r2]

    Notice that s  stands for slant height, the capital R  stands for the larger radius and the lowercase r  stands for the smaller radius.
    ::注意 代表倾斜高度 首都R代表大半径 较小半径代表小半径

    Let’s look at an example.
    ::让我们举个例子。

    What is the surface area of a truncated cone with a slant height of 6 cm, a radius of 8 cm and a radius of 6 cm?
    ::倾斜高度为6厘米、半径为8厘米、半径为6厘米的短流锥形锥形的表面区域是什么?

    First, fill in all you know into the surface area formula.
    ::首先,填充你所知道的 填入表面积公式。

    S A = π [ s ( R + r ) + R 2 + r 2 ] S A = π [ 6 ( 8 + 6 ) + 8 2 + 6 2 ]

    ::SA[s(R+r)+R2+r2]SA[6(8+6)+82+62]

    Next, use algebra to solve for the surface area.
    ::接下来,使用代数解析表面积。

    S A = π [ 6 ( 8 + 6 ) + 8 2 + 6 2 ] S A = π [ 6 ( 14 ) + 64 + 36 ] S A = π [ 84 + 64 + 36 ] S A = π [ 184 ] S A = 578.1

    ::SA[6(8+6)+82+62]SA[6(14)+64+36]SA[84+64+36]SA[184]SA=578.1

    The answer is 578.1.
    ::答案是578.1。

    The surface area of the cone is 578.1 cm 2 .
    ::锥体的表面面积为578.1厘米。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about Robbie’s fan stand.
    ::Robbie的粉丝摊位有问题,

    Robbie is building a stand in the shape of a truncated cone. The bottom circular base has a radius of 3 ft. The circular top has a radius of 2 ft. The slant height for the stand is 3 ft. Robbie has to find the surface area so that he knows how much paint he needs.
    ::Robbie正在建造一个站台, 其形状是短锥形。 底圆基的半径为 3 英尺。 圆顶的半径为 2 英尺。 该摊位的斜坡高度为 3 英尺。 Robbie 必须找到表面区域, 才能知道他需要多少油漆 。

    First, substitute what you know into the surface area formula.
    ::首先,将您所知道的替换为表面积公式。

    S A = π [ s ( R + r ) + R 2 + r 2 ] S A = π [ 3 ( 3 + 2 ) + 3 2 + 2 2 ]

    ::SA[s(R+r)+R2+r2]SA[3(3+2)+32+22]

    Next, use algebra to solve for the surface area.
    ::接下来,使用代数解析表面积。

    S A = π [ 3 ( 3 + 2 ) + 3 2 + 2 2 ] S A = π [ 3 ( 5 ) + 9 + 4 ] S A = π [ 15 + 9 + 4 ] S A = π [ 28 ] S A = 87.96


    The answer is 87.96.
    ::SA[3(3+2)+32+22]SA[3(5)+9+4]SA[15+9+4]SA[28]SA=87.96 答案是87.96.

    Robbie needs enough paint to cover 88 ft 2 .
    ::罗比需要足够的油漆来覆盖88平方英尺

    Example 2
    ::例2

    Trey is decorating conical party hats for his party by wrapping them in colored tissue paper. Each hat has a radius of 4.2 centimeters and a slant height of 8.6 centimeters. If he wants to wrap six party hats, how much paper will he need?
    ::Trey用彩色组织纸包着彩色组织纸来装饰党帽。 每顶帽子半径4.2厘米,斜高8.6厘米。 如果他想要包着6顶党帽,他需要多少纸?

    First, substitute what you know into the surface area formula.
    ::首先,将您所知道的替换为表面积公式。

    S A = π r 2 + π r s S A = π ( 4.2 ) 2 + π ( 4.2 ) ( 8.6 )

    ::2rsSA(4.2)2(4.2)(8.6)

    Next, use algebra to solve for the surface area.
    ::接下来,使用代数解析表面积。

    S A = π ( 4.2 ) 2 + π ( 4.2 ) ( 8.6 ) S A = π ( 17.64 ) + π ( 36.12 ) S A = 55.4 + 113.5 S A = 168.9

    ::SA(17.64)(36.12)SA=55.4+113.5SA=168.9

    Then, find the total area of the 6 hats.
    ::然后找到6顶帽子的总面积

    S A total = 6 × S A one hat S A total = 6 × 168.9 S A total = 1013.4


    The answer is 1013.4.
    ::SA总额=6xSAone ANSA总额=6x168.9SA总额=101.34 答案是101.34。

    Trey would need 1013.4 cm 2  of paper to make the six hats.
    ::Trey需要101.34厘米的纸张 才能制造六顶帽子

    Example 3
    ::例3

    Find the surface area of a cone with a radius of 4 inches and a slant height of 6 inches.
    ::找到圆锥体的表面面积,半径为4英寸,斜坡高度为6英寸。

    First, substitute what you know into the surface area formula.
    ::首先,将您所知道的替换为表面积公式。

    S A = π r 2 + π r s S A = π ( 4 ) 2 + π ( 4 ) ( 6 )

    ::2rsSA(4)2(4)(4)(6)

    Next, use algebra to solve for the surface area.
    ::接下来,使用代数解析表面积。

    S A = π ( 4 ) 2 + π ( 4 ) ( 6 ) S A = π ( 16 ) + π ( 24 ) S A = 50.3 + 75.4 S A = 125.7

    ::* SA(4)2(4)(6)SA(16(24)SA=50.3+75.4SA=125.7)

    The answer is 125.7.
    ::答案是125.7

    The surface area of the cone is 125.7 in 2 .
    ::锥体的表面面积为125.7英寸2。

    Example 4
    ::例4

    Find the surface area of a cone with a radius of 5 feet and a slant height of 8 feet.
    ::找到圆锥体的表面区域,半径为5英尺,斜坡高度为8英尺。

    First, substitute what you know into the surface area formula.
    ::首先,将您所知道的替换为表面积公式。

    S A = π r 2 + π r s S A = π ( 5 ) 2 + π ( 5 ) ( 8 )

    ::2rsSA(5)2(5)(5)(5)(8)(8)

    Next, use algebra to solve for the surface area.
    ::接下来,使用代数解析表面积。

    S A = π ( 5 ) 2 + π ( 5 ) ( 8 ) S A = π ( 25 ) + π ( 40 ) S A = 78.5 + 125.7 S A = 204.2

    ::SA =78.5+125.7SA=204.2

    The answer is 204.2.
    ::答案是204.2。

    The surface area of the cone is 204.2 ft 2 .
    ::锥体的表面面积为204.2平方英尺2。

    Example 5
    ::例5

    Find the surface area of a cone with a radius of 3 inches and a slant height of 4.5 inches.
    ::找到圆锥体的表面面积,半径为3英寸,斜坡高度为4.5英寸。

    First, substitute what you know into the surface area formula.
    ::首先,将您所知道的替换为表面积公式。

    S A = π r 2 + π r s S A = π ( 3 ) 2 + π ( 3 ) ( 4.5 )

    ::萨罗尔2尔萨(3)2(3)(3)(5)

    Next, use algebra to solve for the surface area.
    ::接下来,使用代数解析表面积。

    S A = π ( 3 ) 2 + π ( 3 ) ( 4.5 ) S A = π ( 9 ) + π ( 13.5 ) S A = 28.3 + 42.4 S A = 70.7

    ::SA(9)_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    The answer is 70.7.
    ::答案是70.7

    The surface area of the cone is 70.7 in 2 .
    ::锥体的表面面积为70.7英寸2。

    Review
    ::回顾

    Answer the questions below each of the following diagrams. Use 3.14 to approximate π  and round your answers to the nearest hundredths place.
    ::回答下图下的问题。 使用3. 14到约 ° , 并绕过您最接近的百位的答案 。

    lesson content

    1. What is the name of the figure represented in this net?
    ::1. 这一净额所列数字的名称是什么?

    2. What is the diameter of this figure?
    ::2. 这一数字的直径是多少?

    3. What is the slant height of the figure?
    ::3. 数字的倾斜高度是多少?

    4. What is the surface area of the figure?
    ::4. 数字的表面积是多少?

    lesson content

    5. What is the name of this figure?
    ::5. 这个数字叫什么名字?

    6. What is the shape of the base?
    ::6. 基地的形状是什么?

    7. What is the diameter of the base?
    ::7. 基地的直径是多少?

    8. What is the surface area of this figure?
    ::8. 这一数字的表面积是多少?

    lesson content

    9. What is the name of this figure?
    ::9. 这个数字叫什么名字?

    10. What is the shape of the base?
    ::10. 基地的形状是什么?

    11. What is the diameter of the base?
    ::11. 基地的直径是多少?

    12. What is the surface area of this figure?
    ::12. 这一数字的表面积是多少?

    Find the surface area of each cone.
    ::找到每个锥体的表面区域。

    13.  r = 4   i n , s h = 5   i n  
    ::13 r= 4 英寸,sh= 5 英寸

    14.  r = 5   m , s h = 7   m
    ::14.r=5米,sh=7米

    15.  r = 3   c m , s h = 6   c m
    ::15 r= 3 cm,sh= 6 cm

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

     

    Resources
    ::资源