Section outline

  • Factoring Completely 
    ::全额保理

    We say that a polynomial is factored completely when we can’t factor it any more. Here are some suggestions that you should follow to make sure that you factor completely:
    ::我们说,当我们再也不能考虑它的时候,多元性就完全被考虑在内。 以下是一些你应该遵循的建议,以确保你完全考虑:

    • Factor all common monomials first.
      ::先考虑所有共同的单项协议的因数。
    • Identify special products such as difference of squares or the square of a binomial . Factor according to their formulas.
      ::根据公式确定特殊产品,如方形或二进制方形的差数。
    • If there are no special products, factor using the methods we learned in the previous sections.
      ::如果没有特殊产品,就采用我们在前几节中学到的方法。
    • Look at each factor and see if any of these can be factored further.
      ::审视每个因素,看看其中是否有任何因素可以进一步考虑。

    Factoring Completely - Learn by  Example
    ::完全乘数 - 按示例学习

    1. 6 x 2 30 x + 36
    ::1. 6x2-30x+36

    Factor out the common monomial . In this case 6 can be divided from each term :
    ::在此情况下,6可以从每个术语中除以:

    6 ( x 2 5 x + 6 )

    ::6(x2-5x+6)

    There are no special products. We factor x 2 5 x + 6 as a product of two binomials: ( x   ) ( x   )
    ::没有特殊产品。 我们将 x2 - 5x+6 乘以两个二进制的产物sadx) (x) 乘以 x2 - 5x+6 sadx)

    The two numbers that multiply to 6 and add to -5 are -2 and -3, so:
    ::乘以 6 和 加到 -5 的两个数字是 -2 和 - 3, 所以:

    6 ( x 2 5 x + 6 ) = 6 ( x 2 ) ( x 3 )

    ::6(x2-5x+6)=6(x-2)(x-3)

    If we look at each factor we see that we can factor no more.
    ::如果我们看一下每一个因素,我们就会看到,我们无法再考虑更多的因素。

    The answer is 6 ( x 2 ) ( x 3 ) .
    ::答案是6(x-2)(x-3)。

    2.   2 x 2 8
    ::2. 2x2-8

    Factor out common monomials: 2 x 2 8 = 2 ( x 2 4 )
    ::参数显示共同单单数: 2x2- 8=2( x2- 4)

    We recognize x 2 4 as a difference of squares. We factor it as ( x + 2 ) ( x 2 ) .
    ::我们承认 x2 - 4 是方形的差数, 我们将其乘以( x+2)( x-2) 。

    If we look at each factor we see that we can factor no more.
    ::如果我们看一下每一个因素,我们就会看到,我们无法再考虑更多的因素。

    The answer is 2 ( x + 2 ) ( x 2 ) .
    ::答案是2(x+2)(x-2)。

    3.  x 3 + 6 x 2 + 9 x
    ::3. x3+6x2+9x

    Factor out common monomials: x 3 + 6 x 2 + 9 x = x ( x 2 + 6 x + 9 )
    ::系数 : x3+6x2+9x=x(x2+6x+9)

    We recognize x 2 + 6 x + 9 as a perfect square and factor it as ( x + 3 ) 2 .
    ::我们确认x2+6x+9是一个完美的平方,将之乘以(x+3)2。

    If we look at each factor we see that we can factor no more.
    ::如果我们看一下每一个因素,我们就会看到,我们无法再考虑更多的因素。

    The answer is x ( x + 3 ) 2 .
    ::答案是 x( x+3) 2。

    4.  2 x 4 + 162
    ::4.-2x4+162

    Factor out the common monomial. In this case, factor out -2 rather than 2. (It’s always easier to factor out the negative number so that the highest degree term is positive.)
    ::将共同的单数计算出来。 在此情况下, 将 - 2 而不是 2 计算出来( 总是更容易将负数计算出来, 以便最高比例的术语是正数 。 )

    2 x 4 + 162 = 2 ( x 4 81 )

    ::-2x4+162+2(x4-81)

    We recognize expression in parenthesis as a difference of squares. We factor and get:
    ::我们确认括号中的表达形式是方形的差别。

    2 ( x 2 9 ) ( x 2 + 9 )

    ::-2(x2--9)(x2+9)

    If we look at each factor we see that the first parenthesis is a difference of squares. We factor and get:
    ::如果我们看每一因素,我们可以看到第一个括号是方形的差别。我们考虑到并获得:

    2 ( x + 3 ) ( x 3 ) ( x 2 + 9 )

    ::-2(x+3)(x-3)(x2+9)

    If we look at each factor now we see that we can factor no more.
    ::如果我们现在审视每个因素,我们就会看到,我们无法再考虑更多的因素。

    The answer is 2 ( x + 3 ) ( x 3 ) ( x 2 + 9 ) .
    ::答案是-2(x+3)(x-3)(x2+9)。

    5.  x 5 8 x 3 + 16 x
    ::5. x5-8x3+16x

    Factor out the common monomial: x 5 8 x 3 + 14 x = x ( x 4 8 x 2 + 16 )
    ::乘以常见单单数 : x5- 8x3+14x=x( x4- 8x2+16)

    We recognize x 4 8 x 2 + 16 as a perfect square and we factor it as x ( x 2 4 ) 2 .
    ::我们承认 x4-8x2+16 是完美的方形, 我们将其乘以 x( x2- 4) 2 。

    We look at each term and recognize that the term in " data-term="Parentheses" role="term" tabindex="0"> parentheses is a difference of squares.
    ::我们审视每个术语,认识到括号中的术语是方形的区别。

    We factor it and get ( ( x + 2 ) ( x 2 ) ) 2 , which we can rewrite as ( x + 2 ) 2 ( x 2 ) 2 .
    ::我们将其乘数乘以(x+2)(x-2)2, 重写为(x+2)(2)(x-2)2。

    If we look at each factor now we see that we can factor no more.
    ::如果我们现在审视每个因素,我们就会看到,我们无法再考虑更多的因素。

    The final answer is x ( x + 2 ) 2 ( x 2 ) 2 .
    ::最后一个答案是 x(x+2)2(x-2)2。

    Factor out a Common Binomial
    ::考虑一个共同的二进制

    The first step in the factoring process is often factoring out the common monomials from a polynomial. But sometimes have common terms that are binomials. For example, consider the following expression:
    ::保理工过程的第一步往往是从一个多义中将共同的单项性考虑出来。 但有时有共同的二元性术语。 例如,考虑以下表达方式:

    x ( 3 x + 2 ) 5 ( 3 x + 2 )

    ::x( 3x+2) - 5( 3x+2)

    Since the term ( 3 x + 2 ) appears in both terms of the polynomial, we can factor it out. We write that term in front of a set of parentheses containing the terms that are left over:
    ::因为这个词(3x+2)两个词都出现在多义词中, 我们可以将它考虑在内。 我们用一组括号在括号前写该词, 括号中包含剩下的词 :

    ( 3 x + 2 ) ( x 5 )

    :sad3x+2(x-5)

    This expression is now completely factored.
    ::此表达式现已被完全考虑到 。

    Factoring out Common Binomials - Learn by Example
    ::将共同二义义因子因素推算出来 - 按示例学习

    1.   3 x ( x 1 ) + 4 ( x 1 )
    ::1. 3x(x-1)+4(x-1)

    3 x ( x 1 ) + 4 ( x 1 ) has a common binomial of ( x 1 ) .
    ::3x(x-1)+4(x-1)有一个共同的二进制(x-1)。

    When we factor out the common binomial we get ( x 1 ) ( 3 x + 4 ) .
    ::当我们把共同的二进制(x-1)(3x+4)考虑在内时,我们就会得到(x-1)(3x+4)。

    2.  x ( 4 x + 5 ) + ( 4 x + 5 )
    ::2. x(4x+5)+(4x+5)

    x ( 4 x + 5 ) + ( 4 x + 5 ) has a common binomial of ( 4 x + 5 ) .
    ::x( 4x+5) +( 4x+5) +( 4x+5) 具有共同的二进制( 4x+5) 。

    When we factor out the common binomial we get ( 4 x + 5 ) ( x + 1 ) .
    ::当我们考虑到共同的二元论时,我们就会得到(4x+5)(x+1)。

    Example
    ::示例示例示例示例

    Factor completely: 24 x 3 28 x 2 + 8 x .
    ::完全因数: 24x3- 28x2+8x

    First, notice that each term has 4 x as a factor. Start by factoring out 4 x :
    ::首先,注意每个术语有4x作为因数。首先,从考虑到4x开始:

    24 x 3 28 x 2 + 8 x = 4 x ( 6 x 2 7 x + 2 )
    ::24x3-28x2+8x=4x(6x2-7x+2)

    Next, factor the trinomial in the parenthesis. Since a 1 find a c : 6 2 = 12 . Find the factors of 12 that add up to -7. Since 12 is positive and -7 is negative, the two factors should be negative:
    ::其次,将括号中的三角乘数乘以三。自 a1 发现 ac: 62=12。 查找12的乘数加到 - 7. 由于12是正数和 -7是负数, 这两个因素应该是负数:

    12 = 1 12  and  1 + 12 = 13 12 = 2 6  and  2 + 6 = 8 12 = 3 4  and  3 + 4 = 7

    ::12112 和 -112131226 和 -2681234 和 -3447

    Rewrite the trinomial using 7 x = 3 x 4 x , and then :
    ::使用 - 7x3x- 4x 重写三角词, 然后 :

    6 x 2 7 x + 2 = 6 x 2 3 x 4 x + 2 = 3 x ( 2 x 1 ) 2 ( 2 x 1 ) = ( 3 x 2 ) ( 2 x 1 )

    ::6x2-7x+2=6x2-3x-4x+2=3x(2x-1)-2x-1=3x-2(2x-1)-1=3x-2(2x-1)-1

    The final factored answer is:
    ::最后一个因素答案是:

    4 x ( 3 x 2 ) ( 2 x 1 )
    ::4x(3x-2)(2x-1)

    Review
    ::回顾

    Factor completely.
    ::完全的因数。

    1. 2 x 2 + 16 x + 30
      ::2x2+16x+30
    2. 5 x 2 70 x + 245
      ::5x2-70x+245
    3. x 3 + 17 x 2 70 x
      ::-x3+17x2-70x
    4. 2 x 4 512
      ::2x4-512
    5. 25 x 4 20 x 3 + 4 x 2
      ::25x4 - 20x3+4x2
    6. 12 x 3 + 12 x 2 + 3 x
      ::12x3+12x2+3x
    7. 12 c 2 75
      ::12c2-75
    8. 6 x 2 600
      ::6x2-600 6x2-600
    9. 5 t 2 20 t 20
      ::- 5t2-20t-20
    10. 6 x 2 + 18 x 24
      ::6x2+18x-24
    11. n 2 + 10 n 21
      ::-n2+10n-21
    12. 2 a 2 14 a 16
      ::2a2-14a-16

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。