9.12 全额保理
Section outline
-
Factoring Completely
::全额保理We say that a polynomial is factored completely when we can’t factor it any more. Here are some suggestions that you should follow to make sure that you factor completely:
::我们说,当我们再也不能考虑它的时候,多元性就完全被考虑在内。 以下是一些你应该遵循的建议,以确保你完全考虑:-
Factor all common monomials first.
::先考虑所有共同的单项协议的因数。 -
Identify special products such as
difference of squares
or the
square of a binomial
. Factor according to their formulas.
::根据公式确定特殊产品,如方形或二进制方形的差数。 -
If there are no special products, factor using the methods we learned in the previous sections.
::如果没有特殊产品,就采用我们在前几节中学到的方法。 -
Look at each factor and see if any of these can be factored further.
::审视每个因素,看看其中是否有任何因素可以进一步考虑。
Factoring Completely - Learn by Example
::完全乘数 - 按示例学习1.
::1. 6x2-30x+36Factor out the common monomial . In this case 6 can be divided from each term :
::在此情况下,6可以从每个术语中除以:
::6(x2-5x+6)There are no special products. We factor as a product of two binomials:
::没有特殊产品。 我们将 x2 - 5x+6 乘以两个二进制的产物x) (x) 乘以 x2 - 5x+6
x)
The two numbers that multiply to 6 and add to -5 are -2 and -3, so:
::乘以 6 和 加到 -5 的两个数字是 -2 和 - 3, 所以:
::6(x2-5x+6)=6(x-2)(x-3)If we look at each factor we see that we can factor no more.
::如果我们看一下每一个因素,我们就会看到,我们无法再考虑更多的因素。The answer is .
::答案是6(x-2)(x-3)。2.
::2. 2x2-8Factor out common monomials:
::参数显示共同单单数: 2x2- 8=2( x2- 4)We recognize as a difference of squares. We factor it as .
::我们承认 x2 - 4 是方形的差数, 我们将其乘以( x+2)( x-2) 。If we look at each factor we see that we can factor no more.
::如果我们看一下每一个因素,我们就会看到,我们无法再考虑更多的因素。The answer is .
::答案是2(x+2)(x-2)。3.
::3. x3+6x2+9xFactor out common monomials:
::系数 : x3+6x2+9x=x(x2+6x+9)We recognize as a perfect square and factor it as .
::我们确认x2+6x+9是一个完美的平方,将之乘以(x+3)2。If we look at each factor we see that we can factor no more.
::如果我们看一下每一个因素,我们就会看到,我们无法再考虑更多的因素。The answer is .
::答案是 x( x+3) 2。4.
::4.-2x4+162Factor out the common monomial. In this case, factor out -2 rather than 2. (It’s always easier to factor out the negative number so that the highest degree term is positive.)
::将共同的单数计算出来。 在此情况下, 将 - 2 而不是 2 计算出来( 总是更容易将负数计算出来, 以便最高比例的术语是正数 。 )
::-2x4+162+2(x4-81)We recognize expression in parenthesis as a difference of squares. We factor and get:
::我们确认括号中的表达形式是方形的差别。
::-2(x2--9)(x2+9)If we look at each factor we see that the first parenthesis is a difference of squares. We factor and get:
::如果我们看每一因素,我们可以看到第一个括号是方形的差别。我们考虑到并获得:
::-2(x+3)(x-3)(x2+9)If we look at each factor now we see that we can factor no more.
::如果我们现在审视每个因素,我们就会看到,我们无法再考虑更多的因素。The answer is .
::答案是-2(x+3)(x-3)(x2+9)。5.
::5. x5-8x3+16xFactor out the common monomial:
::乘以常见单单数 : x5- 8x3+14x=x( x4- 8x2+16)We recognize as a perfect square and we factor it as .
::我们承认 x4-8x2+16 是完美的方形, 我们将其乘以 x( x2- 4) 2 。We look at each term and recognize that the term in " data-term="Parentheses" role="term" tabindex="0"> parentheses is a difference of squares.
::我们审视每个术语,认识到括号中的术语是方形的区别。We factor it and get , which we can rewrite as .
::我们将其乘数乘以(x+2)(x-2)2, 重写为(x+2)(2)(x-2)2。If we look at each factor now we see that we can factor no more.
::如果我们现在审视每个因素,我们就会看到,我们无法再考虑更多的因素。The final answer is .
::最后一个答案是 x(x+2)2(x-2)2。Factor out a Common Binomial
::考虑一个共同的二进制The first step in the factoring process is often factoring out the common monomials from a polynomial. But sometimes have common terms that are binomials. For example, consider the following expression:
::保理工过程的第一步往往是从一个多义中将共同的单项性考虑出来。 但有时有共同的二元性术语。 例如,考虑以下表达方式:
::x( 3x+2) - 5( 3x+2)Since the term appears in both terms of the polynomial, we can factor it out. We write that term in front of a set of parentheses containing the terms that are left over:
::因为这个词(3x+2)两个词都出现在多义词中, 我们可以将它考虑在内。 我们用一组括号在括号前写该词, 括号中包含剩下的词 :
:3x+2(x-5)
This expression is now completely factored.
::此表达式现已被完全考虑到 。Factoring out Common Binomials - Learn by Example
::将共同二义义因子因素推算出来 - 按示例学习1.
::1. 3x(x-1)+4(x-1)has a common binomial of .
::3x(x-1)+4(x-1)有一个共同的二进制(x-1)。When we factor out the common binomial we get .
::当我们把共同的二进制(x-1)(3x+4)考虑在内时,我们就会得到(x-1)(3x+4)。2.
::2. x(4x+5)+(4x+5)has a common binomial of .
::x( 4x+5) +( 4x+5) +( 4x+5) 具有共同的二进制( 4x+5) 。When we factor out the common binomial we get .
::当我们考虑到共同的二元论时,我们就会得到(4x+5)(x+1)。Example
::示例示例示例示例Factor completely: .
::完全因数: 24x3- 28x2+8xFirst, notice that each term has as a factor. Start by factoring out :
::首先,注意每个术语有4x作为因数。首先,从考虑到4x开始:
::24x3-28x2+8x=4x(6x2-7x+2)Next, factor the trinomial in the parenthesis. Since find : . Find the factors of 12 that add up to -7. Since 12 is positive and -7 is negative, the two factors should be negative:
::其次,将括号中的三角乘数乘以三。自 a1 发现 ac: 62=12。 查找12的乘数加到 - 7. 由于12是正数和 -7是负数, 这两个因素应该是负数:
::12112 和 -112131226 和 -2681234 和 -3447Rewrite the trinomial using , and then :
::使用 - 7x3x- 4x 重写三角词, 然后 :
::6x2-7x+2=6x2-3x-4x+2=3x(2x-1)-2x-1=3x-2(2x-1)-1=3x-2(2x-1)-1The final factored answer is:
::最后一个因素答案是:
::4x(3x-2)(2x-1)Review
::回顾Factor completely.
::完全的因数。-
::2x2+16x+30 -
::5x2-70x+245 -
::-x3+17x2-70x -
::2x4-512 -
::25x4 - 20x3+4x2 -
::12x3+12x2+3x -
::12c2-75 -
::6x2-600 6x2-600 -
::- 5t2-20t-20 -
::6x2+18x-24 -
::-n2+10n-21 -
::2a2-14a-16
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
Factor all common monomials first.