10.6 完成广场
Section outline
-
Completing the Square
::完成广场You saw in the last section that if you have a quadratic equation of the form , you can easily solve it by taking the square root of each side:
::您在最后一节中看到,如果有表( x-2) 2=5 的二次方程,您可以很容易地以每面的平方根来解答它:
::x-2=5和 x-2=5 和 x-2=5Simplify to get:
::要获得的简化 :
::x=2+54.24和 x=2-50.24So what do you do with an equation that isn’t written in this nice form? In this section, you’ll learn how to rewrite any quadratic equation in this form by .
::那么,你对不是以这样好的形式写成的方程式有什么用呢?在这一节中,你将学会如何用这种形式重写任何二次方程式。Complete the Square of a Quadratic Expression
::完成二次曲线表达式的广场Completing the square lets you rewrite a quadratic expression so that it contains a perfect square trinomial that you can factor as the square of a binomial .
::完成方形后, 您可以重写一个二次表达式, 这样它就包含一个完美的正方方形三角, 您可以将它作为二进制的正方形 。Remember that the square of a binomial takes one of the following forms:
::记住二进制的正方形具有以下一种形式:
:x+a)2=x2+2x2+2ax+a2(x-a)2=x2-2ax+a2
So in order to have a perfect square trinomial, we need two terms that are perfect squares and one term that is twice the product of the square roots of the other terms.
::因此,为了有一个完全的平方方形三角体, 我们需要两个完美的平方体, 一个是其他词的平方根的产物的两倍。Completing the Square
::完成广场1. Complete the square for the quadratic expression .
::1. 完成四边表达式x2+4x的方形。To complete the square we need a constant term that turns the expression into a perfect square trinomial. Since the middle term in a perfect square trinomial is always 2 times the product of the square roots of the other two terms, we re-write our expression as:
::要完成方形,我们需要一个常数术语,将表达方式转换成完美的平方三角。 由于在完全平方三角中,中间任期总是另外两个词的平方根产物的2倍,因此我们将表达方式重写为:
::x2+2(2)(x)We see that the constant we are seeking must be
::我们认为,我们所寻求的常数必须是22:
::x2+2(2)(x)+22Answer: By adding 4 to both sides, this can be factored as:
::答复:双方增加4个,可以作为(x+2)2的考虑因素。Notice, though, that we just changed the value of the whole expression by adding 4 to it. If it had been an equation, we would have needed to add 4 to the other side as well to make up for this.
::但请注意,我们刚刚改变了整个表达方式的值,增加了4个。 如果这是一个方程的话,我们需要在另一边加上4个,并弥补这一点。Also, this was a relatively easy example because , the coefficient of the term, was 1. When that coefficient doesn’t equal 1, we have to factor it out from the whole expression before completing the square.
::而且,这是一个比较容易的例子,因为一个X2术语的系数是1,当该系数不等于1时,我们必须在完成正方形之前从整个表达式中将其考虑在内。2. Complete the square for the quadratic expression .
::2. 4x2+32x四方形表达式完成方形。Factor the coefficient of the term:
::x2 术语的系数系数 :
::4(x2+8x) 4(x2+8x)Re-write the expression:
::重写表达式 :
::4(x2+2(4)(xx))We complete the square by adding the constant :
::我们通过添加常数42来完成广场:
::4(x2+2(4)(x)+42)Factor the perfect square trinomial inside the parenthesis:
::括号内完美的正方形三角数乘以 :
::4(x+4)2The expression “completing the square” comes from a geometric interpretation of this situation. Let’s revisit the quadratic expression in Example 1: .
::“完成广场”一词来自对这种情况的几何解释。 让我们重温例1: x2+4x中的二次表达式。We can think of this expression as the sum of three areas. The first term represents the area of a square of side . The second expression represents the areas of two rectangles with a length of 2 and a width of :
::我们可以将这个表达式视为三个区域的总和。 第一个术语代表侧面 x 的平方区域。 第二个表达式代表两个矩形的区域,其长度为 2 和 x 的宽度为 x :We can combine these shapes as follows:
::我们可以将这些形状合并如下:We obtain a square that is not quite complete. To complete the square, we need to add a smaller square of side length 2.
::我们得到的正方形不完全,要完成正方形,我们需要增加一个小的正方形的侧长2。We end up with a square of side length ; its area is therefore . Let’s demonstrate the method of completing the square with an example.
::我们最终会有一个侧长的平方(x+2);因此,其面积是(x+2)2。 让我们举一个例子来展示完成平方的方法。Solving for Unknown Values
::解决未知值Solve the following quadratic equation:
::解决以下二次方程式: 3x2- 10x1Divide all terms by the coefficient of the term:
::将所有条件除以 x2 术语的系数 :
::x2 - 103x% 13Rewrite:
::重写: x2-2 (53) (x) {______________________________________________________________________________________________________________In order to have a perfect square trinomial on the right-hand-side we need to add the constant . Add this constant to both sides of the equation:
::为了在右侧有一个完美的正方形三角形,我们需要加上常数(53)2。 在等式的两侧加上这个常数:
::x2-2( 53)(x) +( 532) 13+( 533) 2Factor the perfect square trinomial and simplify:
::将完美的平方三角和简化乘以:
:x- 532=229)13+259(x-53)2=229
Take the square root of both sides:
::以双方的平方根:
::x-53=229和x-53=229和x-53=229*229x53+229*3.23和x=53-229*0.1Answer: and
::答复:x=3.23和x=0.1Solving Quadratic Equations in Standard Form
::标准表格中溶解二次赤道If an equation is in standard form , we can still solve it by the method of completing the square. All we have to do is start by moving the constant term to the right-hand-side of the equation.
::如果方程式以标准形式( 轴+bx+c=0) , 我们仍可以通过完成方块的方法解答它。 我们只需要从常数开始, 将常数移到方程式的右侧 。Solve the following quadratic equation:
::解决以下二次方程式: x2+15x+12=0Move the constant to the other side of the equation:
::将常数移动到方程式的另一侧:
::x2+15x% 12Rewrite:
::重写 : x2+2( 152)( x) @%% 12Add the constant to both sides of the equation:
::在方程的两侧添加常数( 152) 2:
::x2+2( 152)(x) +( 152) +( 152) +( 12)+( 152) 2Factor the perfect square trinomial and simplify:
::将完美的平方三角和简化乘以:
:x+152)212+2254(x+152)2=1774
Take the square root of both sides:
::以双方的平方根:
::x+152=1774和x+15217474x}152+174474}0.85和x}152 -17447}14.15Answer: and
::答复:x0.85和x14.15Example
::示例示例示例示例Example 1
::例1Solve the following quadratic equation:
::解决以下二次方程:-x2+22x=5Divide all terms by the coefficient of the term:
::将所有条件除以 x2 术语的系数 :
::x2 - 22x% 6Rewrite:
::重写: x2-2( 11) (x) @% 6 。In order to have a perfect square trinomial on the right-hand-side we need to add the constant . Add this constant to both sides of the equation:
::为了在右侧有一个完美的正方形三角形,我们需要加上常数(112)。 在方程的两侧加上这个常数:
::x2-2(11)(x)+(11)2+6+(11)2Factor the perfect square trinomial and simplify:
::将完美的平方三角和简化乘以:
:x-112)6+(112)2(x-53)2=16
Take the square root of both sides:
::以双方的平方根:
::x- 11=16andx- 11_ 11_ 16x=11+16=15andx=11- 4=7Answer: and
::答复:x=15和x=7Review
::回顾Complete the square for each expression.
::填写每个表达式的正方形。-
::x2+5xx -
::x2-2x -
::x2+3xx -
::x2 - 4x -
::3x2+18x -
::2x2-22x -
::8x2 - 10x -
::5x2+12x
Solve each quadratic equation by completing the square.
::通过完成广场来解决每个二次方程。-
::x2 - 4x=5 -
::x2 - 5x=10 -
::x2+10x+15=0 -
::x2+15x+20=0 -
::2x2 - 18x=0 -
::4x2+5x%1 -
::10x2-30x-8=0 -
::5x2+15x-40=0
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -