Section outline

  • Completing the Square 
    ::完成广场

    You saw in the last section that if you have a quadratic equation of the form ( x 2 ) 2 = 5 , you can easily solve it by taking the square root of each side:
    ::您在最后一节中看到,如果有表( x-2) 2=5 的二次方程,您可以很容易地以每面的平方根来解答它:

    x 2 = 5   and   x 2 = 5

    ::x-2=5和 x-2=5 和 x-2=5

    Simplify to get:
    ::要获得的简化 :

    x = 2 + 5 4.24   and   x = 2 5 0.24

    ::x=2+54.24和 x=2-50.24

    So what do you do with an equation that isn’t written in this nice form? In this section, you’ll learn how to rewrite any quadratic equation in this form by .
    ::那么,你对不是以这样好的形式写成的方程式有什么用呢?在这一节中,你将学会如何用这种形式重写任何二次方程式。

    Complete the Square of a Quadratic Expression
    ::完成二次曲线表达式的广场

    Completing the square lets you rewrite a quadratic expression so that it contains a perfect square trinomial that you can factor as the square of a binomial .
    ::完成方形后, 您可以重写一个二次表达式, 这样它就包含一个完美的正方方形三角, 您可以将它作为二进制的正方形 。

    Remember that the square of a binomial takes one of the following forms:
    ::记住二进制的正方形具有以下一种形式:

    ( x + a ) 2 = x 2 + 2 a x + a 2 ( x a ) 2 = x 2 2 a x + a 2

    :sadx+a)2=x2+2x2+2ax+a2(x-a)2=x2-2ax+a2

    So in order to have a perfect square trinomial, we need two terms that are perfect squares and one term that is twice the product of the square roots of the other terms.
    ::因此,为了有一个完全的平方方形三角体, 我们需要两个完美的平方体, 一个是其他词的平方根的产物的两倍。

    Completing the Square 
    ::完成广场

    1. Complete the square for the quadratic expression x 2 + 4 x .
    ::1. 完成四边表达式x2+4x的方形。

    To complete the square we need a constant term that turns the expression into a perfect square trinomial. Since the middle term in a perfect square trinomial is always 2 times the product of the square roots of the other two terms, we re-write our expression as:
    ::要完成方形,我们需要一个常数术语,将表达方式转换成完美的平方三角。 由于在完全平方三角中,中间任期总是另外两个词的平方根产物的2倍,因此我们将表达方式重写为:

    x 2 + 2 ( 2 ) ( x )

    ::x2+2(2)(x)

    We see that the constant we are seeking must be 2 2 :
    ::我们认为,我们所寻求的常数必须是22:

    x 2 + 2 ( 2 ) ( x ) + 2 2

    ::x2+2(2)(x)+22

    Answer: By adding 4 to both sides, this can be factored as: ( x + 2 ) 2
    ::答复:双方增加4个,可以作为(x+2)2的考虑因素。

    Notice, though, that we just changed the value of the whole expression by adding 4 to it. If it had been an equation, we would have needed to add 4 to the other side as well to make up for this.
    ::但请注意,我们刚刚改变了整个表达方式的值,增加了4个。 如果这是一个方程的话,我们需要在另一边加上4个,并弥补这一点。

    Also, this was a relatively easy example because a , the coefficient of the x 2 term, was 1. When that coefficient doesn’t equal 1, we have to factor it out from the whole expression before completing the square.
    ::而且,这是一个比较容易的例子,因为一个X2术语的系数是1,当该系数不等于1时,我们必须在完成正方形之前从整个表达式中将其考虑在内。

    2. Complete the square for the quadratic expression 4 x 2 + 32 x .
    ::2. 4x2+32x四方形表达式完成方形。

    Factor the coefficient of the x 2 term:
    ::x2 术语的系数系数 :

    4 ( x 2 + 8 x )
    ::4(x2+8x) 4(x2+8x)

    Re-write the expression:
    ::重写表达式 :

    4 ( x 2 + 2 ( 4 ) ( x ) )
    ::4(x2+2(4)(xx))

    We complete the square by adding the constant 4 2 :
    ::我们通过添加常数42来完成广场:

    4 ( x 2 + 2 ( 4 ) ( x ) + 4 2 )
    ::4(x2+2(4)(x)+42)

    Factor the perfect square trinomial inside the parenthesis:
    ::括号内完美的正方形三角数乘以 :

    4 ( x + 4 ) 2
    ::4(x+4)2

    The expression “completing the square” comes from a geometric interpretation of this situation. Let’s revisit the quadratic expression in Example 1: x 2 + 4 x .
    ::“完成广场”一词来自对这种情况的几何解释。 让我们重温例1: x2+4x中的二次表达式。

    We can think of this expression as the sum of three areas. The first term represents the area of a square of side x . The second expression represents the areas of two rectangles with a length of 2 and a width of x :
    ::我们可以将这个表达式视为三个区域的总和。 第一个术语代表侧面 x 的平方区域。 第二个表达式代表两个矩形的区域,其长度为 2 和 x 的宽度为 x :

    We can combine these shapes as follows:
    ::我们可以将这些形状合并如下:

    We obtain a square that is not quite complete. To complete the square, we need to add a smaller square of side length 2.
    ::我们得到的正方形不完全,要完成正方形,我们需要增加一个小的正方形的侧长2。

    We end up with a square of side length ( x + 2 ) ; its area is therefore ( x + 2 ) 2 . Let’s demonstrate the method of completing the square with an example.
    ::我们最终会有一个侧长的平方(x+2);因此,其面积是(x+2)2。 让我们举一个例子来展示完成平方的方法。

    Solving for Unknown Values 
    ::解决未知值

    Solve the following quadratic equation: 3 x 2 10 x = 1
    ::解决以下二次方程式: 3x2- 10x1

    Divide all terms by the coefficient of the x 2 term:
    ::将所有条件除以 x2 术语的系数 :

    x 2 10 3 x = 1 3

    ::x2 - 103x% 13

    Rewrite: x 2 2 ( 5 3 ) ( x ) = 1 3
    ::重写: x2-2 (53) (x) {______________________________________________________________________________________________________________

    In order to have a perfect square trinomial on the right-hand-side we need to add the constant ( 5 3 ) 2 . Add this constant to both sides of the equation:
    ::为了在右侧有一个完美的正方形三角形,我们需要加上常数(53)2。 在等式的两侧加上这个常数:

    x 2 2 ( 5 3 ) ( x ) + ( 5 3 ) 2 = 1 3 + ( 5 3 ) 2

    ::x2-2( 53)(x) +( 532) 13+( 533) 2

    Factor the perfect square trinomial and simplify:
    ::将完美的平方三角和简化乘以:

    ( x 5 3 ) 2 = 1 3 + 25 9 ( x 5 3 ) 2 = 22 9

    :sadx- 532=229)13+259(x-53)2=229

    Take the square root of both sides:
    ::以双方的平方根:

    x 5 3 = 22 9 and x 5 3 = 22 9 x = 5 3 + 22 9 3.23 and x = 5 3 22 9 0.1

    ::x-53=229和x-53=229和x-53=229*229x53+229*3.23和x=53-229*0.1

    Answer: x = 3.23 and x = 0.1
    ::答复:x=3.23和x=0.1

    Solving Quadratic Equations in Standard Form
    ::标准表格中溶解二次赤道

    If an equation is in standard form ( a x 2 + b x + c = 0 ) , we can still solve it by the method of completing the square. All we have to do is start by moving the constant term to the right-hand-side of the equation.
    ::如果方程式以标准形式( 轴+bx+c=0) , 我们仍可以通过完成方块的方法解答它。 我们只需要从常数开始, 将常数移到方程式的右侧 。

    Solve the following quadratic equation: x 2 + 15 x + 12 = 0
    ::解决以下二次方程式: x2+15x+12=0

    Move the constant to the other side of the equation:
    ::将常数移动到方程式的另一侧:

    x 2 + 15 x = 12

    ::x2+15x% 12

    Rewrite: x 2 + 2 ( 15 2 ) ( x ) = 12
    ::重写 : x2+2( 152)( x) @%% 12

    Add the constant ( 15 2 ) 2 to both sides of the equation:
    ::在方程的两侧添加常数( 152) 2:

    x 2 + 2 ( 15 2 ) ( x ) + ( 15 2 ) 2 = 12 + ( 15 2 ) 2

    ::x2+2( 152)(x) +( 152) +( 152) +( 12)+( 152) 2

    Factor the perfect square trinomial and simplify:
    ::将完美的平方三角和简化乘以:

    ( x + 15 2 ) 2 = 12 + 225 4 ( x + 15 2 ) 2 = 177 4

    :sadx+152)212+2254(x+152)2=1774

    Take the square root of both sides:
    ::以双方的平方根:

    x + 15 2 = 177 4 and x + 15 2 = 177 4 x = 15 2 + 177 4 0.85 and x = 15 2 177 4 14.15

    ::x+152=1774和x+15217474x}152+174474}0.85和x}152 -17447}14.15

    Answer: x = 0.85 and x = 14.15
    ::答复:x0.85和x14.15

    Example
    ::示例示例示例示例

    Example 1
    ::例1

    Solve the following quadratic equation: x 2 + 22 x = 5
    ::解决以下二次方程:-x2+22x=5

    Divide all terms by the coefficient of the x 2 term:
    ::将所有条件除以 x2 术语的系数 :

    x 2 22 x = 6

    ::x2 - 22x% 6

    Rewrite: x 2 2 ( 11 ) ( x ) = 6.
    ::重写: x2-2( 11) (x) @% 6 。

    In order to have a perfect square trinomial on the right-hand-side we need to add the constant ( 11 ) 2 . Add this constant to both sides of the equation:
    ::为了在右侧有一个完美的正方形三角形,我们需要加上常数(112)。 在方程的两侧加上这个常数:

    x 2 2 ( 11 ) ( x ) + ( 11 ) 2 = 6 + ( 11 ) 2

    ::x2-2(11)(x)+(11)2+6+(11)2

    Factor the perfect square trinomial and simplify:
    ::将完美的平方三角和简化乘以:

    ( x 11 ) 2 = 6 + ( 11 ) 2 ( x 5 3 ) 2 = 16

    :sadx-112)6+(112)2(x-53)2=16

    Take the square root of both sides:
    ::以双方的平方根:

    x 11 = 16 and x 11 = 16 x = 11 + 16 = 15 and x = 11 4 = 7

    ::x- 11=16andx- 11_ 11_ 16x=11+16=15andx=11- 4=7

    Answer: x = 15 and x = 7
    ::答复:x=15和x=7

    Review 
    ::回顾

    Complete the square for each expression.
    ::填写每个表达式的正方形。

    1. x 2 + 5 x
      ::x2+5xx
    2. x 2 2 x
      ::x2-2x
    3. x 2 + 3 x
      ::x2+3xx
    4. x 2 4 x
      ::x2 - 4x
    5. 3 x 2 + 18 x
      ::3x2+18x
    6. 2 x 2 22 x
      ::2x2-22x
    7. 8 x 2 10 x
      ::8x2 - 10x
    8. 5 x 2 + 12 x
      ::5x2+12x

    Solve each quadratic equation by completing the square.
    ::通过完成广场来解决每个二次方程。

    1. x 2 4 x = 5
      ::x2 - 4x=5
    2. x 2 5 x = 10
      ::x2 - 5x=10
    3. x 2 + 10 x + 15 = 0
      ::x2+10x+15=0
    4. x 2 + 15 x + 20 = 0
      ::x2+15x+20=0
    5. 2 x 2 18 x = 0
      ::2x2 - 18x=0
    6. 4 x 2 + 5 x = 1
      ::4x2+5x%1
    7. 10 x 2 30 x 8 = 0
      ::10x2-30x-8=0
    8. 5 x 2 + 15 x 40 = 0
      ::5x2+15x-40=0

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。