Section outline

  • lesson content

    Janet bought a flowering crab apple tree for her front lawn. The tree was 24 inches tall when she bought it and was told it would grow 6 inches in height every week. How can Janet figure out the height of the tree at the end of six weeks?
    ::珍妮特为她的前草坪买了一棵开花的螃蟹苹果树。当她买了这棵树时,树高24英寸,据说每星期会长6英寸高。 珍妮特如何在6周结束时找到树的高度?

    In this concept, you will learn to write linear equations.
    ::在这个概念中,你会学会写线性方程。

    Linear Equation
    ::线性对数

    A linear equation can be written in many different forms. To write a linear equation in slope-intercept form , the and the y - intercept of the line must be known. These values can be either given or calculated using the information given. Remember the slope-intercept of a linear equation is written as:
    ::线性方程式可以以多种不同的形式写成。 要以斜度截面形式写出线性方程式, 必须知道线条的线性方程式和Y的截面。 这些数值可以使用给定的信息给定或计算。 记住线性方程式的斜度截面是:

    y = m x + b  such that ‘ m ’ is the slope of the line, ‘ b ’ is the y -intercept and ( x , y ) are the coordinates of a point on the line.
    ::y=mx+b 表示 'm' 是线的斜坡,`b' 表示 Y 界面,(x,y)表示线上点的坐标。

    Let’s look at an example.
    ::让我们举个例子。

    Write the equation of the line that has a slope of 1 2  and passes through the point ( 0 , 4 ) .
    ::写入线的方程式,线的斜度为12,穿过点(0,-4)。

    First, determine what information is given.
    ::首先,确定提供什么信息。

    The value of the slope ( m ) is 1 2  and the point ( 0 , 4 )  is the value of the y -intercept ( b ).
    ::斜度(m) 值为 12, 点(0) - 4) 值为 y 界面(b) 值。

    Next, write the slope-intercept form for the equation of a line. 
    ::下一步,为直线的方程写入斜坡界面表。

    y = m x + b

    ::y=mx+b y=mx+b

    Next, to write the equation in slope intercept form , the values of ‘ m ’ and ‘ b ’ must be known. Fill these values into the equation.
    ::其次,要以斜坡截击形式写入方程式,必须知道 ' m ' 和 'b ' 的值。将这些值填入方程式。

    y = m x + b y = 1 2 x + ( 4 )

    ::y=mx+by=12x+(- 4)

    Then, simplify the equation.
    ::然后,简化方程。

    y = 1 2 x + ( 4 ) y = 1 2 x 4

    ::y=12x+(- 4)y=12x- 4

    The answer is y = 1 2 x 4 .
    ::答案是y=12x-4。

    Let’s look at another example.
    ::让我们再看看另一个例子。

    Write the equation of the line that has a slope of 3 and passes through the point ( 9 , 6 ) .
    ::写下斜度为3的线的方程,然后通过点(9,6)。

    First, determine what information is given.
    ::首先,确定提供什么信息。

    The value of the slope ( m ) is 3 and the line passes through the point  ( 9 , 6 )  which are the coordinates of a point ( x , y ) on the line.
    ::斜度(m) 值为 3, 线通过点(9,6), 即线上点(x,y)的坐标。

    Next, write the slope-intercept form for the equation of a line.
    ::下一步,为直线的方程写入斜坡界面表。

    y = m x + b

    ::y=mx+b y=mx+b

    Next, to write the equation in slope intercept form, the values of ‘ m ’ and ‘ b ’ must be known. Fill the value for ‘ m ’ into the equation.
    ::其次,要以斜坡拦截形式写入方程式,必须知道 ' m ' 和 'b ' 的值。在方程式中填入`m ' 的值。

    y = m x + b y = 3 x + b

    ::y=mx+by=3x+b y=mx+by=3x+b

    Next, since the value of the y -intercept ( b ) is not known, use the coordinates ( x , y 9 , 6 )  of the point to calculate the y -intercept.
    ::其次,由于 Y 界面(b) 的值未知,使用点的坐标(x,y9,6) 来计算 y 界面。

    y = 3 x + b 6 = 3 ( 9 ) + b

    ::y=3x+b6=3(9)+b

    Next, perform the multiplication on the right side of the equation to clear the parenthesis.
    ::下一步,在方程右侧执行乘法以清除括号。

    6 = 3 ( 9 ) + b 6 = 27 + b

    ::6=3(9)+b6=27+b

    Next, subtract 27 from both sides of the equation and simplify to solve for ‘ b ’.
    ::接下来,从方程的两侧减去27个,并简化 'b' 的解答。

    6 = 27 + b 6 27 = 27 27 + b 21 = b

    ::6=27+B6-27=27-27+B-21=b

    Then, fill in the value for ‘ b ’ into the slope-intercept form of the equation and simplify.
    ::然后,将 " b " 的值填入方程式的斜度拦截形式并简化。

    y = 3 x + b y = 3 x + ( 21 ) y = 3 x 21

    ::y=3x+by=3x+(- 21y=3x- 21)

    The answer is  y = 3 x 21 .
    ::答案是y=3x-21。

    If neither the slope nor the y -intercept is given, then both must be calculated using the coordinates of two points on the line.
    ::如果未给出斜坡或 Y 界面,则两者都必须使用线上两个点的坐标计算。

    Let’s look at an example.
    ::让我们举个例子。

    Write the equation, in slope-intercept form, of the line that passes through the points ( 2 , 6 )  and ( 4 , 6 ) .
    ::以斜坡间距形式写出通过点(-2,6)和点(4,6)的线的方程。

    First, name the points as being the first point and the second point,
    ::首先,将点命名为第一点和第二点,

    ( x 1 , y 1 2 , 6 )   and   ( x 2 , y 2 4 , 6 )

    :sadx1,y1-2,6)和(x2,y24,-6)

    Next, use the coordinates of these points to fill in the formula for calculating the slope of the line.
    ::其次,使用这些点的坐标来填写计算线坡度的公式。

    m = y 2 y 1 x 2 x 1 m = 6 6 4 2

    ::my2 - y1x2 - x1m6 - 64%2

    Next, simplify the right side of the equation and express the answer in simplest form.
    ::接下来,简化方程的右侧,以最简单的形式表达答案。

    m = 6 6 4 2 m = 12 6 m = 2

    ::m6 - 642m126m2

    The answer is -2.
    ::答案是 -2

    The slope of the line is -2.
    ::线的斜坡是 -2。

    Next, use the slope of the line and the coordinates of one point to calculate the y -intercept of the line.
    ::下一步,使用线的斜坡和一个点的坐标来计算线的 Y 插口。

    m = 2   and ( x 1 , y 1 2 , 6 )

    ::2 和 (x1,y1-2,6)

    Next, substitute the values into the slope-intercept form of an equation.
    ::其次,将数值替换为方程式的斜坡间接形式。

    y = m x + b 6 = 2 ( 2 ) + b

    ::y=mx+b6=2(-2)+b

    Next, perform the multiplication to clear the parenthesis.
    ::下一步,执行乘法清除括号。

    6 = 2 ( 2 ) + b 6 = 4 + b

    ::6(-2)+b6=4+b

    Next, subtract 4 from both sides of the equation to solve for ‘ b ’.
    ::接下来,从方程的两侧减去4, 以解决 'b' 。

    6 = 4 + b 6 4 = 4 4 + b 2 = b

    ::6=4+B6-4=4-4-4-4+b2=b

    Then, substitute the values for ‘ m ’ and ‘ b ’ into the slope-intercept form of the equation of a line.
    ::然后,将 " m " 和 " b " 的值换成线形方程式的斜度间距形式。

    y = m x + b y = 2 x + 2

    ::y=mx+by=%2x+2

    The answer is y = 2 x + 2 .
    ::答案是y2x+2。

    The equation of a line can also be written using the values in a given t-table. Remember the values in the table are ordered pairs ( x , y ). If none of the values are given in the form ( x , y 0 , # )  then both the slope and the y -intercept would have to be calculate as shown in the previous example.
    ::线条的方程也可以使用给定的table 中的值来写入。 记住表格中的值是按顺序排列的对( x, y) 。 如果窗体( x, y0, #) 没有给出这些值, 那么则必须按上一个示例所示计算斜度和 y- intercept 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about  Janet and the flowering crab apple tree. She needs to figure out the height of the tree at the end of six weeks, given that it grows 6 inches a week. How can Janet figure this out?
    ::早些时候,有人给了你关于珍妮特和开花的螃蟹苹果树的问题。她需要6周后找出树的高度,因为树每星期生长6英寸。珍妮特怎么能知道呢?

    She can use an equation of a line written in slope intercept form.
    ::她可以使用斜坡截击形式书写线的方程式。

    First, write down the given information.
    ::首先,写下给定的信息。

    The height of the tree increases 6 inches in one week. This means m = change in  y change in  x = 6 1 = 6 . The original height of the tree, was 24 inches. This means b = ( 0 , 24 ) = 24 .
    ::树的高度在一周内增加 6 英寸。 这意味着 ychange 的 m= change in x= 61=6. 树的原始高度为 24 英寸。 这意味着 b= (0) 24= 24 。

    Next, write the equation of a line in slope-intercept form.
    ::下一步,以斜坡界面的形式写出线的方程式 。

    y = m x + b

    ::y=mx+b y=mx+b

    Next, substitute the values of ‘ m ’ and ‘ b ’ into the equation.
    ::其次,将`m ' 和`b ' 的值换成等式。

    y = m x + b y = 6 x + 24

    ::y=mx+by=6x+24 y=mx+by=6x+24

    Next, substitute ‘6’ into the equation for ‘ x ’ to calculate the height of the tree, ‘ y ’ in six weeks.
    ::接下来,将“6”改为“x”,在六周内计算树的高度,“y”。

    y = 6 x + 24 y = 6 ( 6 ) + 24

    ::y=6x+24y=6(6)+24

    Then, simplify the equation.
    ::然后,简化方程。

    y = 36 + 24 y = 60

    ::y=36+24y=60

    The answer is 60.
    ::答案是60岁

    The height of the tree at the end of 6 weeks will be 60 inches or 5 feet.
    ::6周结束时树的高度为60英寸或5英尺。

    Example 2
    ::例2

    Write the equation of the line that has a slope of 4 and crosses the y -axis at the point ( 0 , 3 ) .
    ::写出斜度为 4 的线的方程, 并在点( 0, - 3) 上横跨 Y 轴 。

    First, write down the given information.
    ::首先,写下给定的信息。

    m = 4  and the given point is the y -intercept of the line. Therefore , b = 3 .
    ::m=4, 给定点是线条的 Y 界面。 因此, b3 。

    Next, write the equation of a line in slope-intercept form.
    ::下一步,以斜坡界面的形式写出线的方程式 。

    y = m x + b

    ::y=mx+b y=mx+b

    Next, substitute the values of ‘ m ’ and ‘ b ’ into the equation.
    ::其次,将`m ' 和`b ' 的值换成等式。

    y = m x + b y = 4 x + ( 3 )

    ::y=mx+by=4x+(-3)

    Then, simplify the equation.
    ::然后,简化方程。

    y = 4 x 3

    ::y=4x-3 y=4x-3

    The answer is y = 4 x 3 .
    ::答案是y=4x-3。

    Example 3
    ::例3

    Write an equation in slope-intercept form to model the values given in the following t-table.
    ::以斜坡界面形式写入一个方程式,以模拟下表给出的值。

    x y
    0 6
    1 1
    2 -4
    3 -9
    4 -14

    The value of the y -intercept ( b ) is 6 and the line passes through the points ( 1 , 1 ) , ( 2 , 4 ) , ( 3 , 9 )   and ( 4 , 14 )  which are the coordinates of points ( x , y ) on the line. Choose one of the points to represent ( x , y ).
    ::y- interfits (b) 的值为 6, 横线通过点(1, 1, 2, (2) - 4, (3, 9) 和 4, -14) 的坐标。 选择要代表的点之一 (x, y) 。

    Next, write the slope-intercept form for the equation of a line.
    ::下一步,为直线的方程写入斜坡界面表。

    y = m x + b

    ::y=mx+b y=mx+b

    Next, to write the equation of a line in slope intercept form, the values of ‘ m ’ and ‘ b ’ must be known. Fill the value for ‘ b ’ into the equation.
    ::其次,要以斜坡截击形式写入线的方程式,必须知道 'm ' 和 'b ' 的值。将`b ' 的值填入方程式。

    y = m x + b y = m x + 6

    ::y=mx+by=mx+6 y=mx+6 y=mx+by=mx+6

    Next, since the value of the y -intercept ( b ) is known, use the coordinates ( x , y 1 , 1 )  of the point to calculate the slope.
    ::下一步,由于 Y 界面(b) 的值已知,使用点的坐标(x,y1,1) 来计算斜度。

    y = m x + 6 1 = m ( 1 ) + 6

    ::y=mx+61=m(1)+6

    Next, perform the multiplication on the right side of the equation to clear the parenthesis.
    ::下一步,在方程右侧执行乘法以清除括号。

    1 = m ( 1 ) + 6 1 = m + 6

    ::1=m(1)+61=m+6

    Next, subtract 6 from both sides of the equation and simplify to solve for ‘ m ’.
    ::接下来,从方程两侧减去6, 并简化解答 'm ' 。

    1 = m + 6 1 6 = m + 6 6 5 = m

    ::1=m+61-6=m+6-6-6-6-6-5=m

    Then, fill in the value for ‘ m ’ into the slope-intercept form of the equation and simplify.
    ::然后,将`m ' 的值填入方程式的斜度拦截形式并简化。

    y = m x + b y = m x + 6 y = 5 x + 6

    ::y=mx+by=mx+6y @%5x+6

    The answer is  y = 5 x + 6 .
    ::答案是y5x+6。

    Example 4
    ::例4

    Write the equation of the line in slope-intercept form that passes through the points ( 7 , 0 )  and ( 0 , 4 ) .
    ::以斜坡截取形式写出横穿点(7,0)和点(0,4)的线的方程式。

    First, write down the given information.
    ::首先,写下给定的信息。

    The given points ( 7 , 0 )  and ( 0 , 4 )  are the x - and   y - intercepts respectively of the line.
    ::给定点(7,0)和(0,4)分别为线条的 x 和 y 界面。

    Next, write the slope-intercept form for the equation of a line.
    ::下一步,为直线的方程写入斜坡界面表。

    y = m x + b

    ::y=mx+b y=mx+b

    Next, to write the equation in slope intercept form, the values of ‘ m ’ and ‘ b ’ must be known. Fill the value for ‘ b ’ into the equation.
    ::其次,要以斜坡拦截形式写入方程式,必须知道 ' m ' 和 'b ' 的值。将`b ' 的值填入方程式。

    y = m x + b y = m x + 4

    ::y=mx+by=mx+4 y=mx+4 y=mx+by=mx+4

    Next, name the points as being the first point and the second point,
    ::下个点命名为第一点和第二点,

    ( x 1 , y 1 7 , 0 )   and   ( x 2 , y 2 0 , 4 )

    :sadx1,y17,0)和(x2,y20,4)

    Next, use the coordinates of these points to fill in the formula for calculating the slope of the line.
    ::其次,使用这些点的坐标来填写计算线坡度的公式。

    m = y 2 y 1 x 2 x 1 m = 4 0 0 7

    ::my2-y1x2-x1m=4-00-7

    Next, simplify the right side of the equation and express the answer in simplest form.
    ::接下来,简化方程的右侧,以最简单的形式表达答案。

    m = 4 0 0 7 m = 4 7 m = 4 7

    ::m=4-00-7m=4-7m47

    Then, fill in the value for ‘ m ’ into the slope-intercept form of the equation and simplify.
    ::然后,将`m ' 的值填入方程式的斜度拦截形式并简化。

    y = m x + b y = m x + 4 y = 4 7 x + 4

    ::y=mx+by=mx+4y47x+4

    The answer is  y = 4 7 x + 4 .
    ::答案是y47x+4。

    Example 5
    ::例5

    Write the equation of a line that has a slope of zero and a y -intercept of -5.
    ::写出一条线的方程式,线面的斜度为零,Y- interviews of - 5。

    First, write down the given information.
    ::首先,写下给定的信息。

    m = 0  and the y -intercept of the line is b = 5 .
    ::m=0 线的 Y 界面是 b5 。

    Next, write the equation of a line in slope-intercept form.
    ::下一步,以斜坡界面的形式写出线的方程式 。

    y = m x + b

    ::y=mx+b y=mx+b

    Next, substitute the values of ‘ m ’ and ‘ b ’ into the equation.
    ::其次,将`m ' 和`b ' 的值换成等式。

    y = m x + b y = 0 x + ( 5 )

    ::y=mx+by=0x+(-5)

    Then, simplify the equation.
    ::然后,简化方程。

    y = 0 5 y = 5

    ::y=0 - 5y=5

    The answer is y = 5 .
    ::答案是你们5个

    Review
    ::回顾

    Write the equation of a line with the following slopes and y -intercepts.
    ::以下列斜坡和 Y 截面写入线条的方程式 。

    1.  slope = 2 , y  int = 4
    ::1. 斜度=2,y intt=4

    2.  slope = 3 , y  int = 2  
    ::2. 斜度3,3,y int=2

    3.  slope = 4 , y  int = 4
    ::3. 斜度4,4,y int=4

    4.  slope = 3 , y  int = 5
    ::4. 斜坡=3,y int5

    5.  slope = 1 2 , y  int = 2
    ::5. 斜坡=12,y int2

    6.  slope = 1 3 , y  int = 2
    ::6. 斜度=13,y int=2

    7.  slope = 1 , y  int = 8
    ::7. 斜坡=1,y intt=8

    8.  slope = 2 , y  int = 4
    ::8. 斜度=2,y intt=4

    9.  slope = 1 , y  int = 1
    ::9. 斜坡1,1,y英寸1

    10.  slope = 5 , y  int = 2
    ::10. 斜坡=5,y int2

    Write the following horizontal or vertical line equations.
    ::写入以下水平或垂直线方程式。

    11. A horizontal line with a b  value of 7.
    ::11. 水平线,B值为7。

    12. A horizontal line with a b  value of -4.
    ::12. b 值为-4的横向线条。

    13. A vertical line with an x  value of 2.
    ::13. 垂直线,x值为2。

    14. A vertical line with an x  value of -5.
    ::14. 垂直线,x值为-5。

    Write the equation of a line that passes through the following points and graph them.
    ::写出横穿以下各点的线条的方程并绘制图表。

    15. ( 3 , 3 )  and  ( 3 , 1 )
    ::15. (3,-3)和(-3,3,1)

    16. ( 2 , 3 )  and  ( 0 , 3 )
    ::16. (2,3)和(0,3)

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。