Section outline

  • Geometric Definitions
    ::几何定义

    A point is an exact location in space . It describes a location, but has no size. Examples are shown below:
    ::点是空间中的确切位置。它描述一个位置,但没有大小。示例如下:

    Label It Say It
    A point A

    A line is infinitely many points that extend forever in both directions. Lines have direction and location and are always straight .
    ::一条线是无限多的点,在两个方向上永远延伸。 一条线有方向和位置,并且总是直的。

    Label It Say It
    line g line g
    PQ line P Q

    A plane is a flat surface that contains infinitely many intersecting lines that extend forever in all directions. Think of a plane as a huge sheet of paper with no thickness that goes on forever.
    ::平面是一个平面, 包含无限多的交叉线, 在所有方向都永久延伸。 将平面想象成一张巨大的纸, 没有永久的厚度 。

    lesson content

    Label It Say It
    Plane M Plane M
    Plane A B C Plane A B C

    We can use point , line , and plane to define new terms.
    ::我们可以用点、线和平面来定义新的术语。

    Space is the set of all points extending in three dimensions . Think back to the plane. It extended in two dimensions, what we think of as up/down and left/right. If we add a third dimension, one that is perpendicular to the other two, we arrive at three-dimensional space.
    ::空间是三个维度中所有点的一组。 回想到平面中。 它在两个维度中延伸, 我们称之为向上/ 向下和向左/ 向右。 如果我们加上第三个维度, 一个与其它两个维度垂直, 我们到达三维空间 。

    Points that lie on the same line are collinear . P , Q , R , S ,  and T are collinear because they are all on line w .  If a point U were located above or below line w ,  it would be non-collinear .
    ::同一线上的点是线性线性点。 P、 Q、 R、 S 和 T 是线性点, 因为它们都是线性点。 如果U点位于线上或线下, 它将是非线性点 。

    Points and/or lines within the same plane are coplanar . Lines h and i , and points A , B , C , D , G ,  and K are coplanar in Plane J .  Line K F and point E are non-coplanar with Plane J .
    ::同一平面内的点和/或线系为共平面。 h线和i线,A线、B线、C线、D线、G线和K线系在Plane J线上的点和/或线系为共平面。

    An endpoint is a point at the end of a line segment . A line segment is a portion of a line with two endpoints. Or, it is a finite part of a line that stops at both ends. Line segments are labeled by their endpoints. Order does not matter.
    ::端点是线段结尾的点。线段是两个端点的线条的一部分。或者,是两端都停的线条的有限部分。线段按其端点贴上标签。顺序无关紧要。

    Label It Say It
    ¯ A B Segment A B
    ¯ B A Segment B A

    A ray  is a part of a line. It begins with an endpoint and extends forever away from the endpoint in one direction, perfectly straight. A ray is labeled by its endpoint and one other point on the ray. For rays, order does matter. When labeling, put the endpoint under the side WITHOUT the arrow.
    ::光线是线条的一部分。 它从端点开始, 并且永远从端点向一个方向延伸, 完全直线。 光线用端点和射线上的另一点贴上标签。 对于射线, 命令很重要 。 在标签时, 将端点置于侧面下, 不使用箭头 。

    Label It Say It
    C D Ray C D
    D C Ray C D

    An intersection is a point or set of points where lines, planes, segments, or rays overlap.
    ::交叉点是指线条、平面、段或射线重叠的点或一组点。

    Postulates
    ::假设

    A postulate is a basic rule of geometry. Postulates are assumed to be true (rather than proven), much like definitions. The following is a list of some basic postulates.
    ::假设是几何学的基本规则。 假设假设是真实的( 而不是经过验证的 ) , 非常相似的定义 。 以下列出一些基本假设 。

    Postulate #1: Given any two distinct points, there is exactly one (straight) line containing those two points.
    ::假设 # 1: 鉴于任何两个不同的点, 完全有一个包含这两个点的直线( 直线) 。

    lesson content

    Postulate #2: Given any three non-collinear points, there is exactly one plane containing those three points.
    ::假设2:鉴于任何三个非两极点, 精确地说有一架飞机含有这三个点。

    Postulate #3: If a line and a plane share two points, then the entire line lies within the plane.
    ::假设3:如果一线和一平面共有两点,则整线就位于该平面内。

    Postulate #4: If two distinct lines intersect, the intersection will be one point.
    ::4: 如果两条不同的线交叉, 十字路口将是一个点 。

    Lines l and m intersect at point A .
    ::A点的I线和m线交叉。

    Postulate #5: If two distinct planes intersect, the intersection will be a line.
    ::5: 如果两个不同的平面交叉, 十字路口将是一条线 。

    When making geometric drawings, be sure to be clear and label all points and lines.
    ::在绘制几何图画时,一定要清楚,标出所有点和线条。

    What if you were given a picture of a figure or object, like a map with cities and roads marked on it? How could you explain that picture geometrically? 
    ::如果有人给了你一张图象或物体的照片,比如一张有城市和道路标注的地图呢?你怎么用几何方式解释这个图象呢?

    Examples
    ::实例

    Example 1
    ::例1

    What best describes San Diego, California on a globe: point, line, or plane?
    ::加州圣迭戈 球体上的最佳描述是什么: 点、线或飞机?

    A city is usually labeled with a dot, or point, on a globe.
    ::一个城市通常被贴上一个点或点的标签 在全球。

    Example 2
    ::例2

    Use the picture below to answer these questions.
    ::用下图解这些问题。

    1. List another way to label Plane J .
      ::列出标签为 Plane J 的另一种方式 。

    Plane B D G is one possibility. Any combination of three coplanar points that are not collinear would be correct.
    ::3个非圆线共平板点的任何组合都是正确的。

    1. List another way to label line h .
      ::列出标签行 h 的另一种方式 。

    A B . Any combination of two of the letters A , B , or C would also be correct.
    ::AB. 任何两个字母A、B或C的组合也是正确的。

    1. Are K and F collinear?
      ::K和F是山线吗?

    Yes, they both lie on K F .
    ::是的,他们都躺在KF上

    1. Are E , B and F coplanar? 
      ::E,B和F是双平面吗?

    Yes, even though E is not in Plane J , any three points make a distinct plane. Therefore, the three points create Plane E B F .
    ::是的,尽管E不是在Plane J中,但任何三点就是一个不同的平面。 因此,这三点就形成了Plane EBF。

    Example 3
    ::例3

    What best describes a straight road that begins in one city and stops in a second city: ray, line, segment, or plane?
    ::什么是最能描述一条直路,这条直路始于一个城市,在第二个城市停留:雷、线、线、段或飞机?

    The straight road connects two cities, which are like endpoints. The best term is segment.
    ::直路连接了两个城市,就像终点一样, 最好的用词是分路段。

    Example 4
    ::例4

    Answer the following questions about the picture.
    ::回答以下关于图片的问题。

    1. Is line l coplanar with Plane V , Plane W , both, or neither? 
      ::L线与五号平面、W号平面或两者兼而有之吗?

    Neither
    ::中 无

    1. Are R and Q collinear? 
      ::R和Q是圆线吗?

    Yes
    ::是 是

    1. What point belongs to neither Plane V nor Plane W
      ::第五号计划或W号计划都不属于哪个点?

    S
    ::S S 级

    1. List three points in Plane W
      ::W. Plane W.中列出三点。

    Any combination of P , O , T , and Q would work.
    ::任何P、O、T和Q的组合都会有效

    Example 5
    ::例5

    Draw and label a figure matching the following description: Line A B and ray C D intersect at point C . Then, redraw so that the figure looks different but is still true to the description.
    ::绘制并标签一个符合以下描述的图 : 线 AB 和 ray CD 在 C点交叉。 然后, 重新绘制, 使图看起来不同, 但仍符合描述 。

    Neither the position of A or B on the line, nor the direction that C D points matter.
    ::无论是A或B在线上的位置,还是 " CD点点 " 的重要方向。

    For the second part, this is one way to draw the diagram differently:
    ::对于第二部分,这是以不同方式绘制图表的一种方法:

    Review
    ::回顾

    For questions 1-5, draw and label a figure to fit the descriptions.
    ::对于问题1至5,绘制和标出一个符合描述的数字。

    1. C D intersecting A B and Plane P containing A B but not C D .
      ::CD 交叉 AB 和 plane P , 包含 AB , 但不包含 CD 。
    2. Three collinear points A , B ,  and  C .   B is also collinear with points D and E .
      ::A、B和C.B三个山丘线点也是D和E点的山丘线点。
    3. X Y ,   X Z ,  and X W , such that X Y and X Z are coplanar, but X W is non-coplanar with both of the other rays.
      ::XY, XZ, 和XW, 如此一来, XY 和XZ 是共平板, 但XW 与另外两种射线是非相平面的。
    4. Two intersecting planes, P and Q , with ¯ G H , where G is in plane P and H is in plane Q .
      ::两架交错的飞机,P和Q,G在G和H在G和Q之间。
    5. Four non-collinear points  I , J , K , and  L ,  with line segments connecting all points to each other.
      ::4个非两极点I、J、K和L,各线段将所有点相互连接。
    6. Name this line in five ways.
      ::以五种方式命名此行 。
    7. Name the geometric figure in three different ways.
      ::以三种不同的方式列出几何数字。
    8. Name the geometric figure in two different ways.
      ::以两种不同的方式命名几何图。
    9. What is the best possible geometric model for a soccer field? Explain your answer.
      ::足球场的最佳几何模型是什么?
    10. List two examples of where you see rays in real life.
      ::列举两个例子, 说明您在现实生活中看到光线的地方 。
    11. What type of geometric object is the intersection of a line and a plane? Draw your answer.
      ::线和平面的交叉点是哪一类几何物体? 请绘制您的答案 。
    12. What is the difference between a postulate and a theorem?
      ::假设和定理之间有什么区别?

    For 13-16, use geometric notation to explain each picture in as much detail as possible.
    ::对于13-16,使用几何符号来尽可能详细地解释每一张照片。

    For 17-25, determine if the following statements are true or false.
    ::17-25时,确定以下陈述是真实的还是虚假的。

    1. Any two points are collinear.
      ::任何两个点都是共线的。
    2. Any three points determine a plane.
      ::任何三点都决定飞机的位置。
    3. A line is two rays with a common endpoint.
      ::一线是两线,有共同的终点。
    4. A line segment is infinitely many points between two endpoints.
      ::线段是两个终点之间无限多的点。
    5. A point takes up space.
      ::一个点占上空间。
    6. A line is one-dimensional.
      ::一条线是一维的。
    7. Any four points are coplanar.
      ::任何四个点都是共同平面的
    8. A B could be read “ray A B ” or “ray B A .”
      ::AB可以是“射线AB”或“射线BA”。
    9. A B could be read “line A B ” or “line B A .”
      ::AB可以是“线性AB”或“线性BA”。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。