Section outline

  • Congruent Angles  and Bisectors
    ::Congruent 圆角和双扇区

    When two geometric figures have the same shape and size (or the same angle measure in the case of angles) they are said to be congruent .
    ::当两个几何数字的形状和大小相同(或角度的角度相同)时,据说它们是一致的。

    Label It Say It
    A B C D E F Angle A B C is congruent to angle D E F .

    If two angles are congruent, then they are also equal. To label equal angles we use angle markings , as shown below:
    ::如果两个角度是相同的,那么它们也是相等的。为了给相等角度贴标签,我们使用角标记,如下文所示:

    An angle bisector is a line , or a portion of a line, that divides an angle into two congruent angles, each having a measure exactly half of the original angle. Every angle has exactly one angle bisector.
    ::角角对角是一条线,或一条线的一部分,将一个角分为两个相近的角度,每个角度的量度完全等于原来角度的一半。每个角度都完全有一个角角对角。

    In the picture above, B D ¯ is the angle bisector of A B C , so A B D D B C and m A B D = 1 2 m A B C .
    ::在以上图中,BD是 ABC的角角, 所以 ABDDDDBC 和 mABD=12mABC 。

    What if you were told that a line segment divides an angle in half? How would you find the measures of the two new angles formed by that segment? 
    ::如果有人告诉你,一个线条段将一个角度分成一半?你将如何发现该段形成的两个新角度的度量?

    Examples
    ::实例

    For Examples  1 and 2, copy the figure below and label it with the following information:
    ::关于例1和例2,抄录下图,并贴上下列资料:

    Example 1
    ::例1

    A C
    ::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    You should have corresponding markings on A and C .
    ::你应该在"Aand"C上有相应的标记

    Example 2
    ::例2

    B D
    ::#BD#

    You should have corresponding markings on B and D (that look different from the markings you made in Example 1).
    ::你应该在BandD(与例1中的标记不同)上有相应的标记。

    Example 3
    ::例3

    Write all equal angle statements.
    ::写入所有等角语句 。

    m A D B = m B D C = m F D E = 45 m A D F = m A D C = 90

    ::

    Example 4
    ::例4

    What is the measure of each angle?
    ::每个角度的量度是多少?

    From the picture, we see that the angles are equal.
    ::从画面来看,我们看到角度是相等的。

    Set the angles equal to each other and solve.
    ::设定对等角度并解析 。

    ( 5 x + 7 ) = ( 3 x + 23 ) ( 2 x ) = 16 x = 8

    :sad5x+7) (3x+23) (2x) (16) x=8)

    To find the measure of A B C , plug in x = 8 to
    ::要找到 ABC, 插入 x=8 到

    ( 5 x + 7 ) ( 5 ( 8 ) + 7 ) = ( 40 + 7 ) = 47 .
    :sad5x+7) (5(8))+7) (40+7) (47)。

    Because m A B C = m X Y Z ,   m X Y Z = 47 too.
    ::因为MABC=mXYZ, mXY47也。

    Example 5
    ::例5

    Is O P ¯ the angle bisector of S O T ?
    ::索特的角是分角吗?

    Yes, O P ¯ is the angle bisector of S O T from the markings in the picture.
    ::是的, OKOT的角 从图片的标记的两侧角。

    Review
    ::回顾

    For 1-4, use the following picture to answer the questions.
    ::1-4,使用以下图片回答问题。

    1. What is the angle bisector of T P R ?
      ::“TPR”的视角是什么?
    2. What is m Q P R ?
      ::什么是MPR?
    3. What is m T P S ?
      ::什么是MTPS?
    4. What is m Q P V ?
      ::什么是PV?

    For 5-6, use algebra to determine the value of variable in each problem.
    ::对于5-6,使用代数来确定每个问题变量的价值。

    For 7-10, decide if the statement is true or false.
    ::7-10,决定声明是真实还是虚假。

    1. Every angle has exactly one angle bisector.
      ::每个角度都有一个截面角
    2. Any marking on an angle means that the angle is 90 .
      ::角上的任何标记表示角为 90 。
    3. An angle bisector divides an angle into three congruent angles.
      ::角对角区将角分为三个相容角度。
    4. Congruent angles have the same measure.
      ::共形角度具有相同的度量。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。