1.3 Congruent 角和角双扇形
Section outline
-
Congruent Angles and Bisectors
::Congruent 圆角和双扇区When two geometric figures have the same shape and size (or the same angle measure in the case of angles) they are said to be congruent .
::当两个几何数字的形状和大小相同(或角度的角度相同)时,据说它们是一致的。Label It Say It Angle is congruent to angle . If two angles are congruent, then they are also equal. To label equal angles we use angle markings , as shown below:
::如果两个角度是相同的,那么它们也是相等的。为了给相等角度贴标签,我们使用角标记,如下文所示:An angle bisector is a line , or a portion of a line, that divides an angle into two congruent angles, each having a measure exactly half of the original angle. Every angle has exactly one angle bisector.
::角角对角是一条线,或一条线的一部分,将一个角分为两个相近的角度,每个角度的量度完全等于原来角度的一半。每个角度都完全有一个角角对角。In the picture above, is the angle bisector of , so and .
::在以上图中,BD是 ABC的角角, 所以 ABDDDDBC 和 mABD=12mABC 。What if you were told that a line segment divides an angle in half? How would you find the measures of the two new angles formed by that segment?
::如果有人告诉你,一个线条段将一个角度分成一半?你将如何发现该段形成的两个新角度的度量?Examples
::实例For Examples 1 and 2, copy the figure below and label it with the following information:
::关于例1和例2,抄录下图,并贴上下列资料:Example 1
::例1
::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~You should have corresponding markings on and .
::你应该在"Aand"C上有相应的标记Example 2
::例2
::#BD#You should have corresponding markings on and (that look different from the markings you made in Example 1).
::你应该在BandD(与例1中的标记不同)上有相应的标记。Example 3
::例3Write all equal angle statements.
::写入所有等角语句 。
::Example 4
::例4What is the measure of each angle?
::每个角度的量度是多少?From the picture, we see that the angles are equal.
::从画面来看,我们看到角度是相等的。Set the angles equal to each other and solve.
::设定对等角度并解析 。
:5x+7) (3x+23) (2x) (16) x=8)
To find the measure of , plug in to
::要找到 ABC, 插入 x=8 到.
:5x+7) (5(8))+7) (40+7) (47)。
Because too.
::因为MABC=mXYZ, mXY47也。Example 5
::例5Is the angle bisector of ?
::索特的角是分角吗?Yes, is the angle bisector of from the markings in the picture.
::是的, OKOT的角 从图片的标记的两侧角。Review
::回顾For 1-4, use the following picture to answer the questions.
::1-4,使用以下图片回答问题。-
What is the angle bisector of
?
::“TPR”的视角是什么? -
What is
?
::什么是MPR? -
What is
?
::什么是MTPS? -
What is
?
::什么是PV?
For 5-6, use algebra to determine the value of variable in each problem.
::对于5-6,使用代数来确定每个问题变量的价值。For 7-10, decide if the statement is true or false.
::7-10,决定声明是真实还是虚假。-
Every angle has exactly one angle bisector.
::每个角度都有一个截面角 -
Any marking on an angle means that the angle is
.
::角上的任何标记表示角为 90 。 -
An angle bisector divides an angle into three congruent angles.
::角对角区将角分为三个相容角度。 -
Congruent angles have the same measure.
::共形角度具有相同的度量。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
What is the angle bisector of
?