Section outline

  • Inductive Reasoning
    ::引引引理由

    One type of reasoning is inductive reasoning . Inductive reasoning entails making conclusions based upon examples and patterns. Visual patterns and provide good examples of inductive reasoning. Let’s look at some patterns to get a feel for what inductive reasoning is.
    ::一种推理是感性推理。 感性推理需要根据实例和模式做出结论。 视觉模式并提供感性推理的好例子。 让我们看看某些模式,以了解感性推理是什么。

    What if you were given a pattern of three numbers or shapes and asked to determine the sixth number or shape that fit that pattern?
    ::如果给您三个数字或形状的图案 要求您确定符合这个图案的第六个数字或形状呢?

    Examples
    ::实例

    Example 1
    ::例1

    A dot pattern is shown below. How many dots would there be in the 4 t h figure? How many dots would be in the 6 t h figure?
    ::下面显示点图案。第4位图案将有多少点?第6位图案将有多少点?

    Draw a picture. Counting the dots, there are 4 + 3 + 2 + 1 = 10   d o t s .
    ::绘制图片。 计算点数时, 有 4+3+2+1=10 点 。

    For the 6 t h figure, we can use the same pattern, 6 + 5 + 4 + 3 + 2 + 1 . There are 21 dots in the 6 t h figure.
    ::6+5+4+3+2+1。 第6图中有21点。

    Example 2
    ::例2

    How many triangles would be in the 10 t h figure?
    ::第10位数有多少三角形?

    There would be 10 squares in the 10 t h figure, with a triangle above and below each one. There is also a triangle on each end of the figure. That makes 10 + 10 + 2 = 22 triangles in all.
    ::第10位图中将有10个方形,每个方形上下有一个三角形。图的每个端端上还有一个三角形。 总共10+10+2=22三角形。

    Example 3
    ::例3

    Look at the pattern 2, 4, 6, 8, 10, What is the 19 t h term in the pattern?
    ::看看模式2,4,6,8,10,... 这个模式的第19个术语是什么?

    Each term is 2 more than the previous term.
    ::每个任期比前一任期多两个任期。

    You could count out the pattern until the 19 t h term, but that could take a while. Notice that the 1 s t term is 2 1 , the 2 n d term is 2 2 , the 3 r d term is 2 3 , and so on. So, the 19 t h term would be 2 19 or 38.
    ::你可以算出第19个学期之前的模式,但这可能需要一段时间。请注意,第一个学期是21,第二个学期是22,第三个学期是23,等等。因此,第19个学期将是219或38。

    Example 4
    ::例4

    Look at the pattern: 3, 6, 12, 24, 48,
    ::看这个模式: 3,6,12,24,48,...

    What is the next term in the pattern? What is the 10 t h  term?
    ::下个学期是什么?第十个学期是什么?

    Each term is multiplied by 2 to get the next term.
    ::每个任期乘以 2 以获得下一任期。

              

    Therefore, the next term will be 48 2 or 96.
    ::因此,下一任期将是482或96。

    To find the 10 t h term, continue to multiply by 2, or 3 2 2 2 2 2 2 2 2 2 2 9 = 1536 .
    ::要找到第10个学期,继续乘以2,或3,2,2,2,2,2,2,2,2,2,2,2,29=1536。

    Example 5
    ::例5

    Find the 8 t h term in the list of numbers: 2 , 3 4 , 4 9 , 5 16 , 6 25
    ::查找数字列表中的第八学期: 2,34,49,516,625...

    First, change 2 into a fraction, or 2 1 . So, the pattern is now 2 1 , 3 4 , 4 9 , 5 16 , 6 25 The top is 2, 3, 4, 5, 6. It increases by 1 each time, so the 8 t h term’s numerator is 9. The denominators are the square numbers, so the 8 t h term’s denominator is 8 2 or 64. The 8 t h term is 9 64 .
    ::首先,将2变成一个分数,也就是21, 所以,现在的模式是21,34,49,516,625... 上部是2,3,4,5,6,6 上部是2,4,5,6,每次增加1, 所以第八学期的分子数是9, 分母是平方数, 所以第八学期的分母是82或64, 第八学期是964。

    Review
    ::回顾

    For questions 1-3, determine how many dots there would be in the 4 t h and the 10 t h pattern of each figure below.
    ::对于问题1-3,确定下图第4位和第10位图案将有多少点。

    1. Use the pattern below to answer the questions.
      1. Draw the next figure in the pattern.
        ::在图案中绘制下一个图案。
      2. How does the number of points in each star relate to the figure number?
        ::每个恒星的点数与数字数字有何关联?

      ::使用下面的图案回答问题。在图案中绘制下一个图。每个恒星的点数与图案数有何关联?
    2. Use the pattern below to answer the questions. All the triangles are equilateral triangles.
      1. Draw the next figure in the pattern. How many triangles does it have?
        ::在图案中绘制下一个图。 它有多少三角形 ?
      2. Determine how many triangles are in the 24 t h figure.
        ::确定第24个图中有多少三角形。

      ::使用下面的图案回答问题。所有三角都是等边三角形。在图案中绘制下一个图。它有多少三角形?确定第24图中有多少三角形。

    For questions 6-13, determine: the next three terms in the pattern.
    ::关于问题6-13,确定:模式中的今后三个术语。

    1. 5, 8, 11, 14, 17,
    2. 6, 1, -4, -9, -14,
    3. 2, 4, 8, 16, 32,
    4. 67, 56, 45, 34, 23,
    5. 9, -4, 6, -8, 3,
    6. 1 2 , 2 3 , 3 4 , 4 5 , 5 6
    7. 2 3 , 4 7 , 6 11 , 8 15 , 10 19 ,
    8. -1, 5, -9, 13, -17,

    For questions 14-17, determine the next two terms and describe the pattern.
    ::关于问题14-17,确定下两个术语并说明模式。

    1. 3, 6, 11, 18, 27,
    2. 3, 8, 15, 24, 35,
    3. 1, 8, 27, 64, 125,
    4. 1, 1, 2, 3, 5,

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源