2.1 来自模式的引因
Section outline
-
Inductive Reasoning
::引引引理由One type of reasoning is inductive reasoning . Inductive reasoning entails making conclusions based upon examples and patterns. Visual patterns and provide good examples of inductive reasoning. Let’s look at some patterns to get a feel for what inductive reasoning is.
::一种推理是感性推理。 感性推理需要根据实例和模式做出结论。 视觉模式并提供感性推理的好例子。 让我们看看某些模式,以了解感性推理是什么。What if you were given a pattern of three numbers or shapes and asked to determine the sixth number or shape that fit that pattern?
::如果给您三个数字或形状的图案 要求您确定符合这个图案的第六个数字或形状呢?Examples
::实例Example 1
::例1A dot pattern is shown below. How many dots would there be in the figure? How many dots would be in the figure?
::下面显示点图案。第4位图案将有多少点?第6位图案将有多少点?Draw a picture. Counting the dots, there are .
::绘制图片。 计算点数时, 有 4+3+2+1=10 点 。For the figure, we can use the same pattern, . There are 21 dots in the figure.
::6+5+4+3+2+1。 第6图中有21点。Example 2
::例2How many triangles would be in the figure?
::第10位数有多少三角形?There would be 10 squares in the figure, with a triangle above and below each one. There is also a triangle on each end of the figure. That makes triangles in all.
::第10位图中将有10个方形,每个方形上下有一个三角形。图的每个端端上还有一个三角形。 总共10+10+2=22三角形。Example 3
::例3Look at the pattern 2, 4, 6, 8, 10, What is the term in the pattern?
::看看模式2,4,6,8,10,... 这个模式的第19个术语是什么?Each term is 2 more than the previous term.
::每个任期比前一任期多两个任期。You could count out the pattern until the term, but that could take a while. Notice that the term is , the term is , the term is , and so on. So, the term would be or 38.
::你可以算出第19个学期之前的模式,但这可能需要一段时间。请注意,第一个学期是21,第二个学期是22,第三个学期是23,等等。因此,第19个学期将是219或38。Example 4
::例4Look at the pattern: 3, 6, 12, 24, 48,
::看这个模式: 3,6,12,24,48,...What is the next term in the pattern? What is the term?
::下个学期是什么?第十个学期是什么?Each term is multiplied by 2 to get the next term.
::每个任期乘以 2 以获得下一任期。Therefore, the next term will be or 96.
::因此,下一任期将是482或96。To find the term, continue to multiply by 2, or .
::要找到第10个学期,继续乘以2,或3,2,2,2,2,2,2,2,2,2,2,2,29=1536。Example 5
::例5Find the term in the list of numbers:
::查找数字列表中的第八学期: 2,34,49,516,625...First, change 2 into a fraction, or . So, the pattern is now The top is 2, 3, 4, 5, 6. It increases by 1 each time, so the term’s numerator is 9. The denominators are the square numbers, so the term’s denominator is or 64. The term is .
::首先,将2变成一个分数,也就是21, 所以,现在的模式是21,34,49,516,625... 上部是2,3,4,5,6,6 上部是2,4,5,6,每次增加1, 所以第八学期的分子数是9, 分母是平方数, 所以第八学期的分母是82或64, 第八学期是964。Review
::回顾For questions 1-3, determine how many dots there would be in the and the pattern of each figure below.
::对于问题1-3,确定下图第4位和第10位图案将有多少点。-
-
-
-
Use the pattern below to answer the questions.
-
Draw the next figure in the pattern.
::在图案中绘制下一个图案。 -
How does the number of points in each star relate to the figure number?
::每个恒星的点数与数字数字有何关联?
::使用下面的图案回答问题。在图案中绘制下一个图。每个恒星的点数与图案数有何关联? -
Draw the next figure in the pattern.
-
Use the pattern below to answer the questions. All the triangles are equilateral triangles.
-
Draw the next figure in the pattern. How many triangles does it have?
::在图案中绘制下一个图。 它有多少三角形 ? -
Determine how many triangles are in the
figure.
::确定第24个图中有多少三角形。
::使用下面的图案回答问题。所有三角都是等边三角形。在图案中绘制下一个图。它有多少三角形?确定第24图中有多少三角形。 -
Draw the next figure in the pattern. How many triangles does it have?
For questions 6-13, determine: the next three terms in the pattern.
::关于问题6-13,确定:模式中的今后三个术语。- 5, 8, 11, 14, 17,
- 6, 1, -4, -9, -14,
- 2, 4, 8, 16, 32,
- 67, 56, 45, 34, 23,
- 9, -4, 6, -8, 3,
- -1, 5, -9, 13, -17,
For questions 14-17, determine the next two terms and describe the pattern.
::关于问题14-17,确定下两个术语并说明模式。- 3, 6, 11, 18, 27,
- 3, 8, 15, 24, 35,
- 1, 8, 27, 64, 125,
- 1, 1, 2, 3, 5,
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。Resources
::资源 -