Section outline

  • Conjectures and Counterexamples
    ::假设和对应示例

    A conjecture is an “educated guess” that is based on examples in a pattern. A counterexample is an example that disproves a conjecture.
    ::一种假设是一种基于模式实例的“教育猜想 ” 。 反例就是否定一种猜想的例子。

    Suppose you were given a mathematical pattern like h = 16 / t 2 . What if you wanted to make an educated guess, or conjecture, about h ?
    ::假设给了你像 h = ~ 16/ t2 这样的数学模式,如果你想做一个教育性的猜测,或者推测,大约是 h?

    Examples
    ::实例

    Use the following information for Examples 1 and 2:
    ::实例1和2使用以下信息:

    A car salesman sold 5 used cars to five different couples. He noticed that each couple was under 30 years old. The following day, he sold a new, luxury car to a couple in their 60’s. The salesman determined that only younger couples by used cars.
    ::一个汽车销售员向五对不同的夫妇出售了五辆旧车。 他注意到每对夫妇都不到30岁。 第二天,他向60年代的一对夫妇出售了一辆新的豪华轿车。 销售员确定只有年轻夫妇才用二手车。

    Example 1
    ::例1

    Is the salesman’s conjecture logical? Why or why not?
    ::销售员的推测合乎逻辑吗? 为什么或为什么?

    It is logical based on his experiences, but is not true.
    ::这是根据他的经验合乎逻辑的,但事实并非如此。

    Example 2
    ::例2

    Can you think of a counterexample?
    ::你能想到一个反面的例子吗?

    A counterexample would be a couple that is 30 years old or older buying a used car.
    ::30岁或30岁以上的一对夫妇购买一辆二手车,将是一个反实例。

    Example 3
    ::例3

    Here’s an algebraic equation and a table of values for n and t .
    ::这是代数方程式和n和t的数值表。

    t = ( n 1 ) ( n 2 ) ( n 3 )

    ::t=(n-1)(n-2)(n-3)

    n ( n 1 ) ( n 2 ) ( n 3 ) t
    1 ( 0 ) ( 1 ) ( 2 ) 0
    2 ( 1 ) ( 0 ) ( 1 ) 0
    3 ( 2 ) ( 1 ) ( 0 ) 0

    After looking at the table, Pablo makes this conjecture:
    ::Pablo在查看桌子后,

    The value of ( n 1 ) ( n 2 ) ( n 3 ) is 0 for any number n .
    :sadn-1) (n-2) (n-3) 值为 0, 任何 n 数值为 0 。

    Is this a true conjecture?
    ::这是真的猜测吗?

    This is not a valid conjecture. If Pablo were to continue the table to n = 4 , he would have see that ( n 1 ) ( n 2 ) ( n 3 ) = ( 4 1 ) ( 4 2 ) ( 4 3 ) = ( 3 ) ( 2 ) ( 1 ) = 6
    ::这不是一个有效的假设。 如果巴勃罗继续将表格的n=4, 他就会看到(n-1)(n-2)(n-3)=(4-1)(4-2)(4-3)=(3)(2)(1)=6)

    In this example n = 4 is the counterexample.
    ::在此示例中, n=4 是反例 。

    Example 4
    ::例4

    Arthur is making figures for an art project. He drew polygons and some of their diagonals .
    ::Arthur正在为艺术项目做数字,他画了多边形和一些对角形。

    From these examples, Arthur made this conjecture:
    ::Arthur从这些例子中得出这样的推测:

    If a convex polygon has n sides, then there are n 2 triangles formed when diagonals are drawn from any vertex of the polygon.
    ::如果锥形多边形有正边,则在从多边形的任何顶端抽取对角时形成n-2三角形。

    Is Arthur’s conjecture correct? Or, can you find a counterexample?
    ::亚瑟的猜想是否正确? 或者,你能找到相反的例子吗?

    The conjecture appears to be correct. If Arthur draws other polygons, in every case he will be able to draw n 2 triangles if the polygon has n sides.
    ::猜想似乎是正确的。 如果亚瑟绘制其他多边形, 在每种情况下, 如果多边形有 n- 2 边, 他就可以绘制 n-2 三角形 。

    Notice that we have not proved Arthur’s conjecture, but only found several examples that hold true. So, at this point , we say that the conjecture is true.
    ::我们注意到我们没有证明阿瑟的推测,但只发现了几个符合事实的例子。 因此,在这一点上,我们说推测是真实的。

    Example 5
    ::例5

    Give a counterexample to this statement: Every prime number is an odd number.
    ::给此语句一个反例: 每个质数是一个奇数 。

    The only counterexample is the number 2: an even number (not odd) that is prime.
    ::唯一的反例是数字2:一个偶数(非奇数),这个数字是质数。

    Review
    ::回顾

    Give a counterexample for each of the following statements.
    ::对以下各语句进行反比。

    1. If n is a whole number, then n 2 > n .
      ::如果 n 是一个整数,则 n2>n。
    2. All numbers that end in 1 are prime numbers.
      ::以1结尾的所有数字都是质数。
    3. All positive fractions are between 0 and 1.
      ::所有正分数在0到1之间。
    4. Any three points that are coplanar are also collinear.
      ::任何三个点的共平面点也是共线点。
    5. All girls like ice cream.
      ::所有女孩都喜欢冰淇淋
    6. All high school students are in choir.
      ::所有高中学生都参加合唱团。
    7. For any angle there exists a complementary angle.
      ::对于任何角度都存在一个互补角度。
    8. All teenagers can drive.
      ::所有青少年都能开车
    9. If n is an integer, then n > 0 .
      ::如果 n 是整数,则 n>0。
    10. All equations have integer solutions.
      ::所有方程式都有整数解决方案 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源