2.5 预测和反示例
章节大纲
-
Conjectures and Counterexamples
::假设和对应示例A conjecture is an “educated guess” that is based on examples in a pattern. A counterexample is an example that disproves a conjecture.
::一种假设是一种基于模式实例的“教育猜想 ” 。 反例就是否定一种猜想的例子。Suppose you were given a mathematical pattern like h = . What if you wanted to make an educated guess, or conjecture, about h ?
::假设给了你像 h = ~ 16/ t2 这样的数学模式,如果你想做一个教育性的猜测,或者推测,大约是 h?Examples
::实例Use the following information for Examples 1 and 2:
::实例1和2使用以下信息:A car salesman sold 5 used cars to five different couples. He noticed that each couple was under 30 years old. The following day, he sold a new, luxury car to a couple in their 60’s. The salesman determined that only younger couples by used cars.
::一个汽车销售员向五对不同的夫妇出售了五辆旧车。 他注意到每对夫妇都不到30岁。 第二天,他向60年代的一对夫妇出售了一辆新的豪华轿车。 销售员确定只有年轻夫妇才用二手车。Example 1
::例1Is the salesman’s conjecture logical? Why or why not?
::销售员的推测合乎逻辑吗? 为什么或为什么?It is logical based on his experiences, but is not true.
::这是根据他的经验合乎逻辑的,但事实并非如此。Example 2
::例2Can you think of a counterexample?
::你能想到一个反面的例子吗?A counterexample would be a couple that is 30 years old or older buying a used car.
::30岁或30岁以上的一对夫妇购买一辆二手车,将是一个反实例。Example 3
::例3Here’s an algebraic equation and a table of values for and .
::这是代数方程式和n和t的数值表。
::t=(n-1)(n-2)(n-3)1 0 2 0 3 0 After looking at the table, Pablo makes this conjecture:
::Pablo在查看桌子后,The value of is 0 for any number .
:n-1) (n-2) (n-3) 值为 0, 任何 n 数值为 0 。
Is this a true conjecture?
::这是真的猜测吗?This is not a valid conjecture. If Pablo were to continue the table to , he would have see that
::这不是一个有效的假设。 如果巴勃罗继续将表格的n=4, 他就会看到(n-1)(n-2)(n-3)=(4-1)(4-2)(4-3)=(3)(2)(1)=6)In this example is the counterexample.
::在此示例中, n=4 是反例 。Example 4
::例4Arthur is making figures for an art project. He drew polygons and some of their diagonals .
::Arthur正在为艺术项目做数字,他画了多边形和一些对角形。From these examples, Arthur made this conjecture:
::Arthur从这些例子中得出这样的推测:If a convex polygon has sides, then there are triangles formed when diagonals are drawn from any vertex of the polygon.
::如果锥形多边形有正边,则在从多边形的任何顶端抽取对角时形成n-2三角形。Is Arthur’s conjecture correct? Or, can you find a counterexample?
::亚瑟的猜想是否正确? 或者,你能找到相反的例子吗?The conjecture appears to be correct. If Arthur draws other polygons, in every case he will be able to draw triangles if the polygon has sides.
::猜想似乎是正确的。 如果亚瑟绘制其他多边形, 在每种情况下, 如果多边形有 n- 2 边, 他就可以绘制 n-2 三角形 。Notice that we have not proved Arthur’s conjecture, but only found several examples that hold true. So, at this point , we say that the conjecture is true.
::我们注意到我们没有证明阿瑟的推测,但只发现了几个符合事实的例子。 因此,在这一点上,我们说推测是真实的。Example 5
::例5Give a counterexample to this statement: Every prime number is an odd number.
::给此语句一个反例: 每个质数是一个奇数 。The only counterexample is the number 2: an even number (not odd) that is prime.
::唯一的反例是数字2:一个偶数(非奇数),这个数字是质数。Review
::回顾Give a counterexample for each of the following statements.
::对以下各语句进行反比。-
If
is a whole number, then
.
::如果 n 是一个整数,则 n2>n。 -
All numbers that end in 1 are prime numbers.
::以1结尾的所有数字都是质数。 -
All positive fractions are between 0 and 1.
::所有正分数在0到1之间。 -
Any three points that are coplanar are also collinear.
::任何三个点的共平面点也是共线点。 -
All girls like ice cream.
::所有女孩都喜欢冰淇淋 -
All high school students are in choir.
::所有高中学生都参加合唱团。 -
For any angle there exists a complementary angle.
::对于任何角度都存在一个互补角度。 -
All teenagers can drive.
::所有青少年都能开车 -
If
is an integer, then
.
::如果 n 是整数,则 n>0。 -
All equations have integer solutions.
::所有方程式都有整数解决方案 。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。Resources
::资源 -
If
is a whole number, then
.