Section outline

  • Properties of Equality and Congruence
    ::平等和和谐的特性

    The basic properties of equality were introduced to you in Algebra I. Here they are again:
    ::在代数一中向您介绍了平等的基本特性。

    • Reflexive Property of Equality : A B = A B
      ::弹性平等财产:AB=AB
    • Symmetric Property of Equality : If m A = m B , then m B = m A
      ::平等对等属性:如果 mA=mB,那么mB=mA
    • Transitive Property of Equality : If A B = C D and C D = E F , then A B = E F
      ::平等的过境财产:如果AB=CD和CD=EF,那么AB=EF
    • Substitution Property of Equality : If a = 9 and a c = 5 , then 9 c = 5
      ::平等替代财产:如果a=9和a-c=5、9-c=5
    • Addition Property of Equality : If 2 x = 6 , then 2 x + 5 = 6 + 5 or 2 x + 5 = 11
      ::2x=6,2x+5=6+5或2x+5=11
    • Subtraction Property of Equality : If m x + 15 = 65 , then m x + 15 15 = 65 15 or m x = 50
      ::等同的减法属性: 如果 mx+1565, 那么mx+151515651515或 mx=50
    • Multiplication Property of Equality : If y = 8 , then 5 y = 5 8 or 5 y = 40
      ::平等乘数属性:如果y=8,那么5y=58或5y=40
    • Division Property of Equality : If 3 b = 18 , then 3 b 3 = 18 3 or b = 6
      ::平等财产:如果3b=18,那么3b3=183或b=6
    • Distributive Property : 5 ( 2 x 7 ) = 5 ( 2 x ) 5 ( 7 ) = 10 x 35
      ::分配财产:5(2x-7)=5(2x)-5(7)=10x-35

    Just like the properties of equality, there are properties of congruence. These properties hold for figures and shapes.
    ::和平等的属性一样,也有一致性的属性。这些属性包含数字和形状。

    • Reflexive Property of Congruence : ¯ A B ¯ A B or B B
      ::古老的古老财产:ABAB或BB
    • Symmetric Property of Congruence : If ¯ A B ¯ C D , then ¯ C D ¯ A B . Or, if A B C D E F , then D E F A B C
      ::共度的对称属性:如果是,那么就是。或者,如果是,如果是,那么就是。
    • Transitive Property of Congruence : If ¯ A B ¯ C D and ¯ C D ¯ E F , then ¯ A B ¯ E F . Or, if A B C D E F and D E F G H I , then A B C G H I
      ::共产主义的过境财产:如果有的话,那就有,或者,如果有"ABC'DEF"和"DEF'GHI",那么ABC'GHI

    When you solve equations in algebra you use properties of equality. You might not write out the property for each step, but you should know that there is an equality property that justifies that step. We will abbreviate “Property of Equality” “ P o E ” and “Property of Congruence” “ P o C ” when we use these properties in proofs.
    ::当用代数解析方程式时,您可以使用平等的属性。您可能不会为每个步骤写出这些属性,但您应该知道有平等财产可以证明这一步骤的合理性。当我们用这些属性作为证据时,我们将缩略“平等财产”“PoE”和“共性财产”“PoC”。

    Suppose you know that a circle measures 360 degrees and you want to find what kind of angle one-quarter of a circle is.
    ::假设您知道一个圆度是360度, 您想要找到一个圆的四分之一的角是什么。

    Examples
    ::实例

    For Examples 1 and 2, use the given property of equality to fill in the blank. x  and y   are real numbers.
    ::对于例1和例2,使用给定的平等财产填充空白。x和y是实际数字。

    Example 1
    ::例1

    Distributive: If 4 ( 3 x 8 ) , then ______________.
    ::分配: 如果 4 (3x-8), 那么 。

    12 x 32
    ::12 - 32 12 - 32

    Example 2
    ::例2

    Transitive: If y = 12 and x = y , then ______________
    ::中转性:如果y=12和x=y,那么

    x = 12
    ::x=12x=12

    Example 3
    ::例3

    Solve 2 ( 3 x 4 ) + 11 = x 27 and write the property for each step (also called “to justify each step”).
    ::解决2(2,3x-4)+11=x-27,并写下每一步骤的财产(也称为“每一步骤的合理性”)。

    2 ( 3 x 4 ) + 11 = x 27 6 x 8 + 11 = x 27 Distributive Property 6 x + 3 = x 27 Combine like terms 6 x + 3 3 = x 27 3 Subtraction   P o E 6 x = x 30 Simplify 6 x x = x x 30 Subtraction   P o E 5 x = 30 Simplify 5 x 5 = 30 5 Division   P o E x = 6 Simplify


    ::2( 3x- 4)+11=x- 27x- 8+11=x- 27 分配属性6x+3=x- 27- Combine 类似术语6x+3-3=x- 27- 3=x- 3

    Example 4
    ::例4

    A B = 8 , B C = 17 , and A C = 20 . Are points A , B , and C collinear ?
    ::AB=8,BC=17,AC=20,AB=8,BC=17,AC=20。A、B和C点是圆线吗?

    Write an equation using the Segment Addition Postulate .
    ::使用线段 附加 假设 写入方程式 。

    A B + B C = A C Segment Addition Postulate 8 + 17 = 20 Substitution   P o E 25 20 Combine like terms


    ::AB+BC=ACSEction 补充假设值8+17=20 替代物PoE25=20类似条件

    Because the two sides of the equation are not equal, A , B and C are not collinear.
    ::因为等式的两面不相等,所以A、B和C不是线性。

    Example 5
    ::例5

    If m A + m B = 100 and m B = 40 , prove that m A is an acute angle .
    ::如果 mA+mB=100和 mB=40, 证明 mA是一个急性角。

    We will use a 2-column format, with statements in one column and their reasons next to it, just like Example A.
    ::我们将使用二栏格式,一栏内有声明,其理由与前面一栏内相同,与例A一样。

    m A + m B = 100 Given Information m B = 40 Given Information m A + 40 = 100 Substitution   P o E m A = 60 Subtraction   P o E A   is an acute   angle Definition of an acute angle , m A < 90


    ::mA+mB=100 即时资讯=40 即时资讯=40 即时资讯=40 即时资讯=40 即时资讯=100 即时通讯=60 即时通讯=60

    Review
    ::回顾

    For questions 1-8, solve each equation and justify each step.
    ::对于问题1至8,解决每个方程式并解释每一步骤的理由。

    1. 3 x + 11 = 16
      ::3x+1116
    2. 7 x 3 = 3 x 35
      ::7x-3=3x-35
    3. 2 3 g + 1 = 19
      ::23g+1=19 23g+1=19
    4. 1 2 M N = 5
      ::12MN=5
    5. 5 m A B C = 540
      ::5mABC=540
    6. 10 b 2 ( b + 3 ) = 5 b
      ::10b-2(b+3)=5b
    7. 1 4 y + 5 6 = 1 3
      ::14y+56=13
    8. 1 4 A B + 1 3 A B = 12 + 1 2 A B
      ::14AB+13AB=12+12AB

    For questions 9-11, use the given property or properties of equality to fill in the blank. x , y , and z are real numbers.
    ::对于问题9-11,使用给定财产或等同财产填充空白。 x,y, z为实际数字。

    1. Symmetric: If x + y = y + z , then ______________.
      ::对称: 如果 x+y=y+z, 那么\ 。
    2. Transitive: If A B = 5 and A B = C D , then ______________.
      ::中转性:如果AB=5和AB=CD,则。
    3. Substitution: If x = y 7 and x = z + 4 , then ______________.
      ::替代: 如果 x=y-7 和 x=z+4, 那么 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源