Section outline

  • Triangle Sum Theorem
    ::三角三角间苏门神话

    The Triangle Sum Theorem says that the three interior angles of any triangle add up to 180 .
    ::三角形Sumorem表示,任何三角形的三个内角加起来等于180。

    m 1 + m 2 + m 3 = 180
    .
    ::m1+m%2+m%3=180%。

    Here is one proof of the Triangle Sum Theorem.
    ::这是三角定理的证明

    Given : A B C with A D | | B C ¯
    ::以 : @ ABC 与 ADBC 的

    Prove : m 1 + m 2 + m 3 = 180
    ::证明: m1+m2+m3=180

    Statement Reason
    1. A B C with A D | | B C ¯ Given
    2. 1 4 ,   2 5 Theorem
    3. m 1 = m 4 ,   m 2 = m 5 angles have = measures
    4. m 4 + m C A D = 180 Linear Pair Postulate
    5. m 3 + m 5 = m C A D Angle Addition Postulate
    6. m 4 + m 3 + m 5 = 180 Substitution PoE
    7. m 1 + m 3 + m 2 = 180 Substitution PoE

    You can use the Triangle Sum Theorem to find missing angles in triangles.
    ::您可以使用三角 Sum 理论在三角形中找到缺失的角度 。

    What if you knew that two of the angles in a triangle measured 55 ? How could you find the measure of the third angle?
    ::如果你知道一个三角形中两个角度是55°C的呢?你如何找到第三个角度的度量?

    Examples
    ::实例

    Example 1
    ::例1

    Two interior angles of a triangle measure 50 and 70 . What is the third interior angle of the triangle?
    ::三角度为 50 和 70 的两个内角。 三角度的第三个内角是什么 ?

    50 + 70 + x = 180 .
    ::50 70x=180 。

    Solve this equation and you find that the third angle is 60 .
    ::解决这个方程式,你就会发现第三个角度是60

    Example 2
    ::例2

    Find the value of x and the measure of each angle.
    ::查找 x 的值和每个角度的度量。

    All the angles add up to 180 .
    ::所有角度加起来等于180

    ( 8 x 1 ) + ( 3 x + 9 ) + ( 3 x + 4 ) = 180 ( 14 x + 12 ) = 180 14 x = 168 x = 12

    :sad8x- 1) ( 3x+9) ( 3x+4) ( 3x+4) ( 14x+12) ( 14x+12) ( 180) ( 14x) ( 14x) ( 14x) = 168x=12)

    Substitute in 12 for x to find each angle.
    ::以 12 代替 x 查找每个角度 。

    [ 3 ( 12 ) + 9 ] = 45 [ 3 ( 12 ) + 4 ] = 40 [ 8 ( 12 ) 1 ] = 95

    Example 3
    ::例3

    What is m T ?
    ::什么是MT?

    We know that the three angles in the triangle must add up to 180 . To solve this problem, set up an equation and substitute in the information you know.
    ::我们知道三角形中的三个角度必须相加到 180 。 要解决这个问题, 请设置一个方程, 并替换您所知道的信息 。

    m M + m A + m T = 180 82 + 27 + m T = 180 109 + m T = 180 m T = 71

    ::M+mA+mT=1808227MT=180109MT=180MT=71

    Example 4
    ::例4

    What is the measure of each angle in an equiangular triangle ?
    ::方形三角形中每个角度的度量是多少?

    To solve, remember that A B C is an equiangular triangle, so all three angles are equal. Write an equation.
    ::要解析, 请记住 { ABC 是一个等角三角形, 所以所有三个角度都是相等的。 写入一个公式 。

    m A + m B + m C = 180 m A + m A + m A = 180 S u b s t i t u t e ,   a l l   a n g l e s   a r e   e q u a l . 3 m A = 180 C o m b i n e   l i k e   t e r m s . m A = 60

    ::mA+mB+mC=180mA+mA+mA=180Substitutive, 所有角度都等于3mA=180Combine like terms.mA=60

    If m A = 60 , then m B = 60 and m C = 60 .
    ::如果mA=60,那么mB=60和mC=60。

    Each angle in an equiangular triangle is 60 .
    ::角角三角形的每个角是60。

    Example 5
    ::例5

    Find the measure of the missing angle.
    ::查找缺失角度的度量 。

    We know that m O = 41 and m G = 90 because it is a right angle . Set up an equation like in Example 3.
    ::我们知道 mO=41和 mG=90, 因为它是一个正确的角度。 设置一个像例3那样的方程 。

    m D + m O + m G = 180 m D + 41 + 90 = 180 m D + 41 = 90 m D = 49

    ::mD+mO+mG=180mD+4190180MD+4190MD+4190MD=49

    Review
    ::回顾

    Determine m 1 in each triangle.
    ::在每个三角形中确定 m% 1 。

    1.

    lesson content

    2.

    lesson content

    3.

    lesson content

    4.

    5.

    lesson content

    6.

    7.

    8. Two interior angles of a triangle measure 32 and 64 . What is the third interior angle of the triangle?
    ::8. 三角度为32°和64°的两个内角。三角度的第三个内角是什么?

    9. Two interior angles of a triangle measure 111 and 12 . What is the third interior angle of the triangle?
    ::9. 三角形措施111和12的两个内角。三角形第三个内角是什么?

    10. Two interior angles of a triangle measure 2 and 157 . What is the third interior angle of the triangle?
    ::10. 三角度量 2 和 157 的两个内角。三角度量 2 和 157 的第三个内角是什么?

    Find the value of x and the measure of each angle.
    ::查找 x 的值和每个角度的度量。

    11.

    12.

    13.

    lesson content

    14.

    lesson content

    15.

    lesson content

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源