Section outline

  • Isosceles Triangles
    ::同位素三角

    An isosceles triangle is a triangle that has at least two congruent sides. The congruent sides of the isosceles triangle are called the legs . The other side is called the base . The angles between the base and the legs are called base angles . The angle made by the two legs is called the vertex angle . One of the important properties of isosceles triangles is that their base angles are always congruent. This is called the Base Angles Theorem .
    ::等星三角形是一个三角形,至少有两个相容的两边。等星三角形的相容两边被称为腿。另一边称为底部。基底和腿之间的角称为基底角。两腿之间的角称为顶端角。等星三角形的一个重要特性是其基底角总是相容的。这称为底底角角理论。

    For D E F , if D E ¯ E F ¯ , then D F .
    ::对于国防,如果 ef'f,那么d'f。

    Another important property of isosceles triangles is that the angle bisector of the vertex angle is also the perpendicular bisector of the base. This is called the Isosceles Triangle Theorem . ( Note this is ONLY true of the vertex angle. ) The converses of the Base Angles Theorem and the Isosceles Triangle Theorem are both true as well.
    ::Isosceles三角形的另一个重要属性是,顶端角角的角两部分也是基底的直角两部分。这称为Isosceles三角定理。 (请注意,顶端角度只有这样。 ) 底部角定理和底部角三角定理的反义都是真实的。

    Base Angles Theorem Converse : If two angles in a triangle are congruent, then the sides opposite those angles are also congruent. So for D E F , if D F , then D E ¯ E F ¯ .
    ::底角理论对立: 如果三角形中的两个角度是相同的, 那么这些角度对面的两边也是相同的。 所以对于“ DEF ” 来说, 如果是“ DF ” , 那么是“ DE ” 。

    Isosceles Triangle Theorem Converse: The perpendicular bisector of the base of an isosceles triangle is also the angle bisector of the vertex angle. So for isosceles D E F , if E G ¯ D F ¯ and D G ¯ G F ¯ , then D E G F E G .
    ::Isosceles三角理论对立:一个等骨质三角基底的直角两侧部分也是顶端角的角两侧部分。对于Iosceles QDEF,如果是 EG 和 DG 和 DG ,那么是 DEG 和 DEG 和 DEG 和 DEG 和 DEG 和 DEG 和 DEG 。

    What if you were presented with an isosceles triangle and told that its base angles measure x and y ? What could you conclude about x and y ?
    ::如果有人向你们介绍一个等离子三角形,并告诉你们其基角是测量 x 和 y 的尺度呢? 关于 x 和 y,你能得出什么结论?

    Examples
    ::实例

    Example 1
    ::例1

    Find the value of x and the measure of each angle.
    ::查找 x 值和每个角度的度量 。

    The two angles are equal, so set them equal to each other and solve for x .
    ::这两个角度是相等的, 所以把它们等同起来, 解决 x 。

    ( 4 x + 12 ) = ( 5 x 3 ) 15 = x

    :sad4x+12) (5x-3) 15=x

    Substitute x = 15 ; the base angles are [ 4 ( 15 ) + 12 ] , or 72 . The vertex angle is 180 72 72 = 36 .
    ::替代 x=15; 底角为 [( 15) +12] 或 72 。 顶点角为 180 72 72 36 。

    Example 2
    ::例2

    True or false: Base angles of an isosceles triangle can be right angles.
    ::真实的或假的: 等离子三角形的基础角度可以是右角度 。

    This statement is false. Because the base angles of an isosceles triangle are congruent, if one base angle is a right angle then both base angles must be right angles. It is impossible to have a triangle with two right ( 90 ) angles. The Triangle Sum Theorem states that the sum of the three angles in a triangle is 180 . If two of the angles in a triangle are right angles, then the third angle must be 0 and the shape is no longer a triangle.
    ::此语句是虚假的。 因为等分三角形的基角度是相容的, 如果一个基角度是右角, 那么两个基角度必须是右角 。 三角形 Sumorem 表示三角形中三个角度的总和是 180 。 如果三角形中两个角度是右角, 那么第三个角度必须是 0 , 形状不再是三角形 。

    Example 3
    ::例3

    Which two angles are congruent?
    ::哪个角度与哪个角度一致?

    This is an isosceles triangle. The congruent angles are opposite the congruent sides. From the arrows we see that S U .
    ::这是一个等星三角形。 相近角度对着相近边。 从箭头中可以看到 {S_U } 。

    Example 4
    ::例4

    If an isosceles triangle has base angles with measures of 47 , what is the measure of the vertex angle?
    ::如果一等分三角形的基角为47,则顶端角的量度为多少?

    Draw a picture and set up an equation to solve for the vertex angle, v . Remember that the three angles in a triangle always add up to 180 .
    ::绘制图片并设置一个方程来解决顶点角度, v. 记住三角形中的三个角度总相加到 180 。

    47 + 47 + v = 180 v = 180 47 47 v = 86

    ::4747*v=180*v=180*_47*_47*v=86*}

    Example 5
    ::例5

    If an isosceles triangle has a vertex angle with a measure of 116 , what is the measure of each base angle?
    ::如果一等分形三角形有一个顶端角, 度量为 116 , 那么每个基角的度量是多少 ?

    Draw a picture and set up and equation to solve for the base angles, b .
    ::为基准角度绘制图片、设置方程式和方程式,b。

    116 + b + b = 180 2 b = 64 b = 32

    ::116b+b=1802b=64b=32

    Review
    ::回顾

    Find the measures of x and/or y .
    ::查找 x 和/或 Y 的量度。

    Determine if the following statements are true or false.
    ::确定以下声明是真实的还是虚假的。

    1. Base angles of an isosceles triangle are congruent.
      ::等分形三角形的基角度是相容的 。
    2. Base angles of an isosceles triangle are complementary.
      ::等分三角形的底角是互补的。
    3. Base angles of an isosceles triangle can be equal to the vertex angle.
      ::等分三角形的基角度可以等于顶点角度。
    4. Base angles of an isosceles triangle are acute.
      ::等分形三角形的底角是急性的。

    Fill in the proofs below.
    ::填写以下证据。

    1. Given : Isosceles C I S , with base angles C and S I O ¯ is the angle bisector of C I S Prove : I O ¯ is the perpendicular bisector of C S ¯
      ::参考:IO是CS的直角两侧部分。
    Statement Reason
    1. 1. Given
    2. 2. Base Angles Theorem
    3. C I O S I O 3.
    4. 4. Reflexive PoC
    5. C I O S I O 5.
    6. C O ¯ O S ¯ 6.
    7. 7. CPCTC
    8. I O C and I O S are supplementary 8.
    9. 9. Congruent Supplements Theorem
    10. I O ¯ is the perpendicular bisector of C S ¯ 10.
    1. Given : Isosceles I C S with C and S I O ¯ is the perpendicular bisector of C S ¯ Prove : I O ¯ is the angle bisector of C I S
      ::说明:IO是CIS的侧角,
    Statement Reason
    1. 1.
    2. C S 2.
    3. C O ¯ O S ¯ 3.
    4. m I O C = m I O S = 90 4.
    5. 5.
    6. 6. CPCTC
    7. I O ¯ is the angle bisector of C I S 7.

    On the x y plane, plot the coordinates and determine if the given three points make a scalene or isosceles triangle.
    ::在 x - y 平面上,绘制坐标并确定给定的三点是否形成比例尺或等分三角形。

    1. (-2, 1), (1, -2), (-5, -2)
    2. (-2, 5), (2, 4), (0, -1)
    3. (6, 9), (12, 3), (3, -6)
    4. (-10, -5), (-8, 5), (2, 3)
    5. (-1, 2), (7, 2), (3, 9)

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源