5.3 三角形中的角分区
章节大纲
-
Angle Bisector Theorem
::角双两区定理An angle bisector cuts an angle exactly in half. One important property of angle bisectors is that if a point is on the bisector of an angle, then the point is equidistant from the sides of the angle. This is called the Angle Bisector Theorem .
::角对角对角将角切成两半。角对角对角的一个重要属性是,如果角对角对角对角对角对角,那么对角对角对角的对角就是等的。这叫做角对角对角的对角理论。In other words, if → B D bisects ∠ A B C , → B A ⊥ ¯ F D , and, → B C ⊥ ¯ D G then F D = D G .
::换句话说,如果"BD"两部分是"ABC",那么"BC"和"BC",然后是"DG"The converse of this theorem is also true.
::这一定理的反义也是对的。Angle Bisector Theorem Converse : If a point is in the interior of an angle and equidistant from the sides, then it lies on the bisector of that angle.
::角双点理论对立:如果一个点在角的内部,而距离两侧的等距,那么它就在于角的两边。When we construct angle bisectors for the angles of a triangle , they meet in one point. This point is called the incenter of the triangle.
::当我们为三角形角度建造角角对角区域时, 它们会在一个点相交。 这个点被称为三角形的中间点 。What if you were told that → G J is the angle bisector of ∠ F G H ? How would you find the length of F J given the length of H J ?
::如果有人告诉你"GJ"是"FGH"的双角部分呢?如果"GJ"是"FGH"的角,你如何找到"FJ"的长度?因为"HJ"的长度,你如何找到"FJ"的长度?Examples
::实例Example 1
::例1Is there enough information to determine if → A B is the angle bisector of ∠ C A D ? Why or why not?
::是否有足够的信息来确定“AB”是否是“CAD”的分角部分?为什么或为什么不是?No because B is not necessarily equidistant from ¯ A C and ¯ A D . We do not know if the angles in the diagram are right angles.
::不,因为比斯和阿联酋的距离不一定相等。我们不知道图表中的角度是否正确。Example 2
::例2A 108 ∘ angle is bisected. What are the measures of the resulting angles?
::A 108 角度是双切的。 由此得出的角度的量度是多少 ?We know that to bisect means to cut in half, so each of the resulting angles will be half of 108 . The measure of each resulting angle is 54 ∘ .
::我们知道,将两条分割成两条意味着将两条分割成两条,因此所产生的角度各为108个角度的一半。 衡量每个结果角度的尺度是54。Example 3
::例3Is Y on the angle bisector of ∠ X W Z ?
::Y在ZXWZ的角上吗?If Y is on the angle bisector, then X Y = Y Z and both segments need to be perpendicular to the sides of the angle. From the markings we know ¯ X Y ⊥ → W X and ¯ Z Y ⊥ → W Z . Second, X Y = Y Z = 6 . So, yes, Y is on the angle bisector of ∠ X W Z .
::如果Y在角角两侧, 那么XY=YZ 和两个区段都必须与角的两侧垂直。 从我们所知道的标记中, 我们知道' XY'WX 和 'YWZ. 第二, XY=Y. 6。 所以, 是的, Y在 QXWZ 的角两侧 。Example 4
::例4→ M O is the angle bisector of ∠ L M N . Find the measure of x .
::MO 是 QLMN 的角 。 查找 x 的度量 。L O = O N by the Angle Bisector Theorem.
::LOON的角 双区定理。4 x − 5 = 23 4 x = 28 x = 7
::4x-5=234x=28x=7Example 5
::例5→ A B is the angle bisector of ∠ C A D . Solve for the missing variable.
::AB 是 QCAD 的角 。 解决缺失变量 。C B = B D by the Angle Bisector Theorem, so we can set up and solve an equation for x .
::CB = BD by the angle Bishain by the Bishain by the angle Bishain by Theorem, 所以我们可以设置并解析 x 的方程式 。x + 7 = 2 ( 3 x − 4 ) x + 7 = 6 x − 8 15 = 5 x x = 3
::x7=2(3x-4)x+7=6x-815=5xx=3Review
::回顾For questions 1-4, → A B is the angle bisector of ∠ C A D . Solve for the missing variable.
::对于问题1-4, AB是 QCAD 的角角对角。 解决缺失变量 。Is there enough information to determine if → A B is the angle bisector of ∠ C A D ? Why or why not?
::是否有足够的信息来确定“AB”是否是“CAD”的分角部分?为什么或为什么不是?-
In what type of triangle will all angle bisectors pass through vertices of the triangle?
::在什么样的三角形中, 所有角的双分区都会通过三角形的顶端? -
What is another name for the angle bisectors of the vertices of a square?
::方形顶端的角分区别又叫什么来着 ? -
Bisect a square with a diagonal. How many triangles do you have and what type of triangles are they?
::以对角分割方形。 您有多少三角形, 以及三角形的类型 ? -
Fill in the blanks in the Angle Bisector Theorem Converse.
::填充角小区理论对讲中的空白。
Given : ¯ A D ≅ ¯ D C , such that A D and D C are the shortest distances to → B A and → B C
::给定:AD'DDC,所以AD和DC 距离BA和BC最短的距离Prove : → B D bisects ∠ A B C
::证明: BD 双形 ABCStatement Reason 1. 1. 2. 2. The shortest distance from a point to a line is perpendicular. 3. ∠ D A B and ∠ D C B are right angles 3. 4. ∠ D A B ≅ ∠ D C B 4. 5. ¯ B D ≅ ¯ B D 5. 6. △ A B D ≅ △ C B D 6. 7. 7. CPCTC 8. → B D bisects ∠ A B C 8. Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。Resources
::资源 -