章节大纲

  • Angle Bisector Theorem
    ::角双两区定理

    An angle bisector cuts an angle exactly in half. One important property of angle bisectors is that if a point is on the bisector of an angle, then the point is equidistant from the sides of the angle. This is called the Angle Bisector Theorem .
    ::角对角对角将角切成两半。角对角对角的一个重要属性是,如果角对角对角对角对角对角,那么对角对角对角的对角就是等的。这叫做角对角对角的对角理论。

    In other words, if B D bisects A B C ,   B A ¯ F D , and, B C ¯ D G then F D = D G .
    ::换句话说,如果"BD"两部分是"ABC",那么"BC"和"BC",然后是"DG"

    The converse of this theorem is also true.
    ::这一定理的反义也是对的。

    Angle Bisector Theorem Converse : If a point is in the interior of an angle and equidistant from the sides, then it lies on the bisector of that angle.
    ::角双点理论对立:如果一个点在角的内部,而距离两侧的等距,那么它就在于角的两边。

    When we construct angle bisectors for the angles of a triangle , they meet in one point. This point is called the incenter of the triangle.
    ::当我们为三角形角度建造角角对角区域时, 它们会在一个点相交。 这个点被称为三角形的中间点 。

    What if you were told that G J is the angle bisector of F G H ? How would you find the length of F J given the length of H J ?
    ::如果有人告诉你"GJ"是"FGH"的双角部分呢?如果"GJ"是"FGH"的角,你如何找到"FJ"的长度?因为"HJ"的长度,你如何找到"FJ"的长度?

    Examples
    ::实例

    Example 1
    ::例1

    Is there enough information to determine if A B is the angle bisector of C A D ? Why or why not?
    ::是否有足够的信息来确定“AB”是否是“CAD”的分角部分?为什么或为什么不是?

    No because B is not necessarily equidistant from ¯ A C and ¯ A D . We do not know if the angles in the diagram are right angles.
    ::不,因为比斯和阿联酋的距离不一定相等。我们不知道图表中的角度是否正确。

    Example 2
    ::例2

    A 108 angle is bisected. What are the measures of the resulting angles?
    ::A 108 角度是双切的。 由此得出的角度的量度是多少 ?

    We know that to bisect means to cut in half, so each of the resulting angles will be half of 108 . The measure of each resulting angle is 54 .
    ::我们知道,将两条分割成两条意味着将两条分割成两条,因此所产生的角度各为108个角度的一半。 衡量每个结果角度的尺度是54。

    Example 3
    ::例3

    Is Y on the angle bisector of X W Z ?
    ::Y在ZXWZ的角上吗?

    If Y is on the angle bisector, then X Y = Y Z and both segments need to be perpendicular to the sides of the angle. From the markings we know ¯ X Y W X and ¯ Z Y W Z . Second, X Y = Y Z = 6 . So, yes, Y is on the angle bisector of X W Z .
    ::如果Y在角角两侧, 那么XY=YZ 和两个区段都必须与角的两侧垂直。 从我们所知道的标记中, 我们知道' XY'WX 和 'YWZ. 第二, XY=Y. 6。 所以, 是的, Y在 QXWZ 的角两侧 。

    Example 4
    ::例4

    M O is the angle bisector of L M N . Find the measure of x .
    ::MO 是 QLMN 的角 。 查找 x 的度量 。

    L O = O N by the Angle Bisector Theorem.
    ::LOON的角 双区定理。

    4 x 5 = 23 4 x = 28 x = 7


    ::4x-5=234x=28x=7

    Example 5
    ::例5

    A B is the angle bisector of C A D . Solve for the missing variable.
    ::AB 是 QCAD 的角 。 解决缺失变量 。

    C B = B D by the Angle Bisector Theorem, so we can set up and solve an equation for x .
    ::CB = BD by the angle Bishain by the Bishain by the angle Bishain by Theorem, 所以我们可以设置并解析 x 的方程式 。

    x + 7 = 2 ( 3 x 4 ) x + 7 = 6 x 8 15 = 5 x x = 3


    ::x7=2(3x-4)x+7=6x-815=5xx=3

    Review
    ::回顾

    For questions 1-4, A B is the angle bisector of C A D . Solve for the missing variable.
    ::对于问题1-4, AB是 QCAD 的角角对角。 解决缺失变量 。

    Is there enough information to determine if A B is the angle bisector of C A D ? Why or why not?
    ::是否有足够的信息来确定“AB”是否是“CAD”的分角部分?为什么或为什么不是?

    1. In what type of triangle will all angle bisectors pass through vertices of the triangle?
      ::在什么样的三角形中, 所有角的双分区都会通过三角形的顶端?
    2. What is another name for the angle bisectors of the vertices of a square?
      ::方形顶端的角分区别又叫什么来着 ?
    3. Bisect a square with a diagonal. How many triangles do you have and what type of triangles are they?
      ::以对角分割方形。 您有多少三角形, 以及三角形的类型 ?
    4. Fill in the blanks in the Angle Bisector Theorem Converse.
      ::填充角小区理论对讲中的空白。

    Given : ¯ A D ¯ D C , such that A D and D C are the shortest distances to B A and B C
    ::给定:AD'DDC,所以AD和DC 距离BA和BC最短的距离

    Prove : B D bisects A B C
    ::证明: BD 双形 ABC

    Statement Reason
    1. 1.
    2. 2. The shortest distance from a point to a line is perpendicular.
    3. D A B and D C B are right angles 3.
    4. D A B D C B 4.
    5. ¯ B D ¯ B D 5.
    6. A B D C B D 6.
    7. 7. CPCTC
    8. B D bisects A B C 8.

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源