5.8 代数和几何中的间接证据
Section outline
-
Indirect Proofs
::间接证明Most likely, the first type of formal proof you learned was a direct proof using direct reasoning. Most of the proofs done in geometry are done in the two-column format, which is a direct proof format. Another common type of reasoning is indirect reasoning, which you have likely done outside of math class. Below we will formally learn what an indirect proof is and see some examples in both algebra and geometry.
::最有可能的是,你所学的第一种正式证据是直接使用直接推理的直接证据。在几何学中,大多数证据都是用两栏格式进行的,即直接证明格式。另一种常见推理是间接推理,你可能在数学课之外这样做。下面我们将正式了解间接证据是什么,并在代数和几何学中看到一些例子。Indirect Proof or Proof by Contradiction : When the conclusion from a hypothesis is assumed false (or opposite of what it states) and then a contradiction is reached from the given or deduced statements.
::间接证据或相反证据:当假设的结论被假定为虚假(或与其所述相反),然后从所提供的或推断的陈述中得出矛盾时。In other words, if you are trying to show that something is true, show that if it was not true there would be a contradiction (something else would not make sense).
::换句话说,如果你试图证明某种事情是真实的,就表明如果它不是真的,就会有矛盾(其他事情是说不通的)。The steps to follow when proving indirectly are:
::间接证明应采取的步骤是:-
Assume the
opposite
of the conclusion (second half) of the statement.
::与声明的结论(后半部分)相反。 -
Proceed as if this assumption is true to find the
contradiction.
::似乎这一假设是真实存在的矛盾。 -
Once there is a contradiction, the original statement is true.
::一旦出现矛盾,原来的说法就是真实的。 -
DO NOT use specific examples.
Use variables so that the contradiction can be generalized.
::不使用具体例子。 使用变量可以使矛盾普遍化。
The easiest way to understand indirect proofs is by example.
::最容易理解间接证据的方法就是举例。What if you wanted to prove a statement was true without a two-column proof? How might you go about doing so?
::如果你想证明一个声明是真实的 没有两栏证明呢?Examples
::实例Example 1 (Algebra Example)
::例1 (代数示例)If , then . Prove this statement is true by contradiction.
::如果 x=2, 那么 3x- 5 10。 以自相矛盾的方式证明此声明是真实的 。Remember that in an indirect proof the first thing you do is assume the conclusion of the statement is false. In this case, we will assume the opposite of "If , then ":
::请记住,在间接证据中,你要做的第一件事就是假设声明的结论是假的。 在这种情况下,我们将假设“如果 x=2, 那么3x- 510 ” :If , then .
::如果 x=2, 那么 3x- 5=10 。Take this statement as true and solve for .
::将此语句视为真实并解决 x 。
::3x-5=103x=15x=5But contradicts the given statement that . Hence, our assumption is incorrect and is true .
::但是 x=5 contratradict 上面所说的 x=2, 因此, 我们的假设是不正确的, 3x- 5 10 是真实的 。Example 2 (Geometry Example)
::例2(几何示例)If is isosceles, then the measure of the base angles cannot be . Prove this indirectly.
::如果 ABC 是等分数, 基角度的测量不能是 92 。 间接地证明这一点 。Remember, to start assume the opposite of the conclusion.
::记住,开始假设相反的结论。The measure of the base angles are .
::基点角度的测量为 92 。If the base angles are , then they add up to . This contradicts the Triangle Sum Theorem that says the three angle measures of all triangles add up to . Therefore, the base angles cannot be .
::如果基角度为 92 , 则相加为 184 。 这与三角三角 Sum 理论相矛盾, 该理论表示所有三角的三角度量为 180 。 因此, 基角度不能为 92 。Example 3 (Geometry Example)
::例3(几何示例)If and are complementary then . Prove this by contradiction.
::如果A和B是互补的,那么A90。用矛盾来证明这一点。Assume the opposite of the conclusion.
::假设相反的结论。.
::A>90__BAR_A>90_BAR_A>90_BAR_A>90_BAR_A>90_BAR_A>90_BAR_A>90_BAR_A>A>90_BAR__BAR_Consider first that the measure of cannot be negative. So if this contradicts the definition of complementary, which says that two angles are complementary if they add up to . Therefore, .
::首先考虑 {B} 的度量不能是负的。 所以如果 {A>90} 与 补充性的定义相矛盾, 补充性的定义是两个角度是互补的, 如果它们加起来达到 90 。 因此, {A>90} 。Example 4
::例4If is an integer and is odd, then is odd. Prove this is true indirectly.
::如果 n 是整数, n2 是奇数, n是奇数。 间接证明这是真的 。First, assume the opposite of “ is odd.”
::首先,假设与“n是奇异的”相反。is even .
::N是偶数。Now, square and see what happens.
::现在,正方圆看看会发生什么。If is even, then , where is any integer.
::如果 n 是偶数,则 n=2a,其中a 是任何整数。
::n2=( 2a) 2=4a2This means that is a multiple of 4. No odd number can be divided evenly by an even number, so this contradicts our assumption that is even. Therefore, must be odd if is odd.
::这意味着 n2 是 4 的 倍数 。 任何奇数不能平均地除以偶数, 因此这与我们假设 n 是 偶数 相矛盾。 因此, n 一定是 奇数, 如果 n2 是 奇数 。Example 5
::例5Prove the SSS Inequality Theorem is true by contradiction. (The SSS Inequality Theorem says: “If two sides of a triangle are congruent to two sides of another triangle, but the third side of the first triangle is longer than the third side of the second triangle, then the included angle of the first triangle's two congruent sides is greater in measure than the included angle of the second triangle's two congruent sides.”)
::证明 SSS 不平等理论是矛盾的。 ( SSS 不平等理论说 : “ 如果三角的两面与另一三角的两面相容, 但第一个三角的第三面长于第二个三角的第三面, 那么第一个三角的两个和谐两面所包括的角在数量上大于第二个三角的两个和谐两面所包括的角 。 ”)First, assume the opposite of the conclusion.
::首先,假设相反的结论。The included angle of the first triangle is less than or equal to the included angle of the second triangle.
::第一个三角形的角小于或等于第二个三角形的角。If the included angles are equal then the two triangles would be congruent by and the third sides would be congruent by . This contradicts the hypothesis of the original statement “the third side of the first triangle is longer than the third side of the second.” Therefore, the included angle of the first triangle must be larger than the included angle of the second.
::如果包含角度相等, 那么两个三角形会和第三方是相同的 。 这与原始声明“ 第一个三角形的第三面比第二个三角形的第三面长” 的假设相矛盾 。 因此, 第一个三角形所包括的角必须大于第二个三角形所包括的角 。Review
::回顾Prove the following statements true indirectly.
::间接地证明以下声明属实。-
If
is an integer and
is even, then
is even.
::如果 n 是整数, n2 是偶数, n 是偶数。 -
If
in
, then
is not equilateral.
::如果在“ABC”中,“ABC”不是对等的,那么“ABC”就不是对等的。 -
If
, then
.
::如果 x > 3, 那么 x2 > 9 。 -
The base angles of an isosceles triangle are congruent.
::等分形三角形的基角度是相容的 。 -
If
is even and
is odd, then
is odd.
::如果 x 是偶数, y 是奇数, 那么 x+y 是奇数 。 -
In
, if
is a right angle, then
cannot be obtuse.
::在“ABE”中,如果“A”是一个正确的角度,那么“B”就不能被忽略。 -
If
, and
are collinear, then
(Segment Addition Postulate).
::如果A、B和C是圆线性,则AB+BC=AC(部分加假设)。 -
If
is equilateral, then the measure of the base angles cannot be
.
::如果 ABC 是等边的, 那么基角度的测量不能是 72 。 -
If
then
.
::如果 x=11 然后 2 -3\\\\ 21 。 -
If
is a right triangle, then it cannot have side lengths 3, 4, and 6.
::如果“ABC”是一个右三角形,则不能有侧长3、4和6。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。Resources
::资源 -
Assume the
opposite
of the conclusion (second half) of the statement.