6.7
章节大纲
-
Kites
::闪石A is a quadrilateral with two distinct sets of adjacent congruent sides. It looks like a kite that flies in the air.
::A 是一个四边形,有两组不同的相邻相近相近面。 它看起来像一只在空中飞翔的风筝。From the definition, a kite could be concave . If a kite is concave, it is called a dart. The word distinct in the definition means that the two pairs of congruent sides have to be different. This means that a square or a rhombus is not a kite.
::从定义上看,风筝可能是骗局。如果风筝是骗局,它就被称为飞镖。定义中不同的词意味着对立方的对立方必须不同。这意味着广场或暴风车不是风筝。The angles between the congruent sides are called vertex angles. The other angles are called non-vertex angles. If we draw the diagonal through the vertex angles, we would have two .
::相近面之间的角被称为顶点角度。其他角度则称为非顶点角度。如果我们通过顶点角度绘制对角,我们就会有两个角度。Facts about Kites
::Kites 的真相1. The non-vertex angles of a kite are congruent.
::1. 风筝的非垂直角度是相同的。If K I T E is a kite, then ∠ K ≅ ∠ T .
::如果KITE是风筝,那么KKT。2. The diagonal through the vertex angles is the angle bisector for both angles.
::2. 通过顶端角的对角线是两个角的角对角。If K I T E is a kite, then ∠ K E I ≅ ∠ I E T and ∠ K I E ≅ ∠ E I T .
::如果KITE是风筝 那么KEIIET和KIEIT。3. Kite Diagonals Theorem : The diagonals of a kite are perpendicular .
::3. Kite Diagonals理论:风筝的对角是垂直的。△ K E T and △ K I T are , so ¯ E I is the perpendicular bisector of ¯ K T ( Isosceles Triangle Theorem).
::KET和KIT是,所以EI是'KT(岛屿三角理论)的直角两侧部分。What if you were told that W I N D is a kite and you are given information about some of its angles or its diagonals? How would you find the measure of its other angles or its sides?
::假若有人对你们说:WINDIS是一个风筝,而且你们获得关于它的一些角度或对角的信息,那末,你们怎么发现它的其他角度或侧面的尺寸呢?Examples
::实例For Examples 1 and 2, use the following information:
::关于例1和例2,请使用以下信息:K I T E is a kite.
::KITE是风筝。Example 1
::例1Find m ∠ K I S .
::去找玛姬丝m ∠ K I S = 25 ∘ by the Triangle Sum Theorem (remember that ∠ K S I is a right angle because the diagonals are perpendicular.)
::MKIS=25 by the Triangle SumTheorem (记住KSI是一个正确角度, 因为对角是垂直的 。 )Example 2
::例2Find m ∠ I S T .
::找到密西西比州m ∠ I S T = 90 ∘ because the diagonals are perpendicular.
::máIST=90 因为对角是垂直的Example 3
::例3Find the missing measures in the kites below.
::在下面的风筝中找出缺失的测量方法。The two angles left are the non-vertex angles, which are congruent.
::左两个角度是非垂直角度,它们相近。130 ∘ + 60 ∘ + x + x = 360 ∘ 2 x = 170 ∘ x = 85 ∘ Both angles are 85 ∘ .
::13060x+x=3602x=170x=85BOT角度为85。The other non-vertex angle is also 94 ∘ . To find the fourth angle, subtract the other three angles from 360 ∘ .
::其它非垂直角度也是 94 。 要找到第四个角度, 请从 360 中减去其他三个角度 。90 ∘ + 94 ∘ + 94 ∘ + x = 360 ∘ x = 82 ∘
::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}九九九四一四一四一x=三六○一x=八二* {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}九九九四一四一四一x=三百零一x=三百零一xx=八二Example 4
::例4Use to find the lengths of the sides of the kite.
::用它来找到风筝两侧的长度。Recall that the Pythagorean Theorem says a 2 + b 2 = c 2 , where c is the hypotenuse . In this kite, the sides are the hypotenuses.
::记得毕达哥里安神话中写着a2+b2=c2, c是下限。在这个风筝中, 侧面是下限 。6 2 + 5 2 = h 2 12 2 + 5 2 = j 2 36 + 25 = h 2 144 + 25 = j 2 61 = h 2 169 = j 2 √ 61 = h 13 = j
::62+52=h2122+52=j236+25=h2144+25=j261=h2 169=j2_61=h13=jExample 5
::例5Prove that the non-vertex angles of a kite are congruent.
::证明风筝的非垂直角度是相同的。Given : K I T E with ¯ K E ≅ ¯ T E and ¯ K I ≅ ¯ T I
::基蒂和凯蒂Prove : ∠ K ≅ ∠ T
::证明: @KTStatement Reason 1. ¯ K E ≅ ¯ T E and ¯ K I ≅ ¯ T I 1. Given 2. ¯ E I ≅ ¯ E I 2. Reflexive PoC 3. △ E K I ≅ △ E T I 3. 4. ∠ K ≅ ∠ T 4. Review
::回顾For questions 1-6, find the value of the missing variable(s). All figures are kites.
::对于问题1-6,请查找缺失变量的价值。所有数字均为风筝。For questions 7-11, find the value of the missing variable(s).
::对于问题7-11,请找到缺失变量的价值。-
Fill in the blanks to the proof below.
::将空白填充到以下的证明上。
Given : ¯ K E ≅ ¯ T E and ¯ K I ≅ ¯ T I
::基於:"可以"和"可以"Prove : ¯ E I is the angle bisector of ∠ K E T and ∠ K I T
::证明:"我"是"KET"和"KIT"的分角Statement Reason 1. ¯ K E ≅ ¯ T E and ¯ K I ≅ ¯ T I 1. 2. ¯ E I ≅ ¯ E I 2. 3. △ E K I ≅ △ E T I 3. 4. 4. CPCTC 5. ¯ E I is the angle bisector of ∠ K E T and ∠ K I T 5. -
Fill in the blanks to the proof below.
::将空白填充到以下的证明上。
Given : ¯ E K ≅ ¯ E T , ¯ K I ≅ ¯ I T
::基於:Prove : ¯ K T ⊥ ¯ E I
::证明:Statement Reason 1. ¯ K E ≅ ¯ T E and ¯ K I ≅ ¯ T I 1. 2. 2. Definition of isosceles triangles 3. ¯ E I is the angle bisector of ∠ K E T and ∠ K I T 3. 4. 4. Isosceles Triangle Theorem 5. ¯ K T ⊥ ¯ E I 5. Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -