章节大纲

  • Kites
    ::闪石

    A is a quadrilateral with two distinct sets of adjacent congruent sides. It looks like a kite that flies in the air.
    ::A 是一个四边形,有两组不同的相邻相近相近面。 它看起来像一只在空中飞翔的风筝。

    From the definition, a kite could be concave . If a kite is concave, it is called a dart. The word distinct in the definition means that the two pairs of congruent sides have to be different. This means that a square or a rhombus is not a kite.
    ::从定义上看,风筝可能是骗局。如果风筝是骗局,它就被称为飞镖。定义中不同的词意味着对立方的对立方必须不同。这意味着广场或暴风车不是风筝。

    The angles between the congruent sides are called vertex angles. The other angles are called non-vertex angles. If we draw the diagonal through the vertex angles, we would have two .
    ::相近面之间的角被称为顶点角度。其他角度则称为非顶点角度。如果我们通过顶点角度绘制对角,我们就会有两个角度。

    Facts about Kites
    ::Kites 的真相

    1. The non-vertex angles of a kite are congruent.
    ::1. 风筝的非垂直角度是相同的。

    If K I T E is a kite, then K T .
    ::如果KITE是风筝,那么KKT。

    2. The diagonal through the vertex angles is the angle bisector for both angles.
    ::2. 通过顶端角的对角线是两个角的角对角。

    If K I T E is a kite, then K E I I E T and K I E E I T .
    ::如果KITE是风筝 那么KEIIET和KIEIT。

    3.  Kite Diagonals Theorem : The diagonals of a kite are perpendicular .
    ::3. Kite Diagonals理论:风筝的对角是垂直的。

    K E T and K I T are , so ¯ E I is the perpendicular bisector of ¯ K T ( Isosceles Triangle Theorem).
    ::KET和KIT是,所以EI是'KT(岛屿三角理论)的直角两侧部分。

    What if you were told that W I N D is a kite and you are given information about some of its angles or its diagonals? How would you find the measure of its other angles or its sides?
    ::假若有人对你们说:WINDIS是一个风筝,而且你们获得关于它的一些角度或对角的信息,那末,你们怎么发现它的其他角度或侧面的尺寸呢?

    Examples
    ::实例

    For Examples 1 and 2, use the following information:
    ::关于例1和例2,请使用以下信息:

    K I T E is a kite.
    ::KITE是风筝。

    Example 1
    ::例1

    Find  m K I S .
    ::去找玛姬丝

    m K I S = 25 by the Triangle Sum Theorem (remember that K S I is a right angle because the diagonals are perpendicular.)
    ::MKIS=25 by the Triangle SumTheorem (记住KSI是一个正确角度, 因为对角是垂直的 。 )

    Example 2
    ::例2

    Find  m I S T .
    ::找到密西西比州

    m I S T = 90 because the diagonals are perpendicular.
    ::máIST=90 因为对角是垂直的

    Example 3
    ::例3

    Find the missing measures in the kites below.
    ::在下面的风筝中找出缺失的测量方法。

     The two angles left are the non-vertex angles, which are congruent.
    ::左两个角度是非垂直角度,它们相近。

    130 + 60 + x + x = 360 2 x = 170 x = 85 Both angles are   85 .


    ::13060x+x=3602x=170x=85BOT角度为85。

     The other non-vertex angle is also 94 . To find the fourth angle, subtract the other three  angles from 360 .
    ::其它非垂直角度也是 94 。 要找到第四个角度, 请从 360 中减去其他三个角度 。

    90 + 94 + 94 + x = 360 x = 82


    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}九九九四一四一四一x=三六○一x=八二* {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}九九九四一四一四一x=三百零一x=三百零一xx=八二

    Example 4
    ::例4

    Use to find the lengths of the sides of the kite.
    ::用它来找到风筝两侧的长度。

    Recall that the Pythagorean Theorem says a 2 + b 2 = c 2 , where c is the hypotenuse . In this kite, the sides are the hypotenuses.
    ::记得毕达哥里安神话中写着a2+b2=c2, c是下限。在这个风筝中, 侧面是下限 。

    6 2 + 5 2 = h 2 12 2 + 5 2 = j 2 36 + 25 = h 2 144 + 25 = j 2 61 = h 2   169 = j 2 61 = h 13 = j


    ::62+52=h2122+52=j236+25=h2144+25=j261=h2 169=j2_61=h13=j

    Example 5
    ::例5

    Prove that the non-vertex angles of a kite are congruent.
    ::证明风筝的非垂直角度是相同的。

    Given : K I T E with ¯ K E ¯ T E and ¯ K I ¯ T I
    ::基蒂和凯蒂

    Prove : K T
    ::证明: @KT

    Statement Reason
    1. ¯ K E ¯ T E and ¯ K I ¯ T I 1. Given
    2. ¯ E I ¯ E I 2. Reflexive PoC
    3. E K I E T I 3.
    4. K T 4.

    Review
    ::回顾

    For questions 1-6, find the value of the missing variable(s). All figures are kites.
    ::对于问题1-6,请查找缺失变量的价值。所有数字均为风筝。

    For questions 7-11, find the value of the missing variable(s).
    ::对于问题7-11,请找到缺失变量的价值。

    1. Fill in the blanks to the proof below.
      ::将空白填充到以下的证明上。

    Given : ¯ K E ¯ T E and ¯ K I ¯ T I
    ::基於:"可以"和"可以"

    Prove : ¯ E I is the angle bisector of K E T and K I T
    ::证明:"我"是"KET"和"KIT"的分角

    Statement Reason
    1. ¯ K E ¯ T E and ¯ K I ¯ T I 1.
    2. ¯ E I ¯ E I 2.
    3. E K I E T I 3.
    4. 4. CPCTC
    5. ¯ E I is the angle bisector of K E T and K I T 5.
    1. Fill in the blanks to the proof below.
      ::将空白填充到以下的证明上。

    Given : ¯ E K ¯ E T , ¯ K I ¯ I T
    ::基於:

    Prove : ¯ K T ¯ E I
    ::证明:

    Statement Reason
    1. ¯ K E ¯ T E and ¯ K I ¯ T I 1.
    2. 2. Definition of isosceles triangles
    3. ¯ E I is the angle bisector of K E T and K I T 3.
    4. 4. Isosceles Triangle Theorem
    5. ¯ K T ¯ E I 5.

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。