7.6 SSS 相似性
Section outline
-
SSS Similarity Theorem
::SSS 相似定理By definition, two triangles are similar if all their are congruent and their corresponding sides are proportional. It is not necessary to check all angles and sides in order to tell if two triangles are similar. In fact, if you know only that all sides are proportional, that is enough information to know that the triangles are similar. This is called the Similarity Theorem .
::按定义,如果两个三角形都是一致的,而相应的边面是正比的,那么两个三角形是相似的。不必检查所有角度和边来判断两个三角形是否相似。事实上,如果你只知道所有边都是正比的,那么信息就足以知道三角形是相似的。这被称为“相似论 ” 。SSS Similarity Theorem: If all three pairs of corresponding sides of two triangles are proportional, then the two triangles are similar.
::SSS 相似性定理: 如果两个三角形的所有三对对应边是比例的, 那么两个三角形是相似的 。If , then .
::如果ABYBZX=ACXY,那么ZABC=YZX。What if you were given a pair of triangles and the side lengths for all three of their sides? How could you use this information to determine if the two triangles are similar?
::如果你们获得一对三角形和三边的侧边长度,你们怎么办?你们如何利用这些信息来判断这两个三角形是否相似呢?Examples
::实例For Examples 1 and 2, use the following diagram :
::关于例1和例2,请使用下图:Example 1
::例1Is ?
::?Is ?
::1530=1633=1836吗?, and . is not similar to .
::1530=12,1633=1633,1836=12。 121633,ZZDEF和GHI并不相似。Example 2
::例2Is ?
::是ABCGHI吗?Is ?
::2030=2233=2436吗?, and . All three ratios reduce to , .
::2030 = 23,2233 = 23,2436 = 23 所有三种比率都降至 23, ABC GHI。Example 3
::例3Determine if the following triangles are similar. If so, explain why and write the similarity statement.
::确定以下三角形是否相似。 如果是, 请解释原因并写入相似语句 。We will need to find the ratios for the corresponding sides of the triangles and see if they are all the same. Start with the longest sides and work down to the shortest sides.
::我们需要找到三角形对应边的比重, 看看它们是否都一样。 从最长的边开始, 工作到最短的边。
::BCFD=2820=75
::BAFE=2115=75
::ACED=1410=75Since all the ratios are the same, by the SSS Similarity Theorem.
::由于所有比率都是相同的,所以由SSS相似理论的ABC-EFD。Example 4
::例4Find and , such that .
::查找 x 和 y , 即 ABC 。According to the similarity statement, the corresponding sides are: . Substituting in what we know, we have .
::根据相似性说明,对应的两面是:ABDE=BCEF=ACDF,替代我们所知的96=4x-110=18y。
::96=4x-110 96=18y9(10)=6(4x-1)9y=18(6)90=24x-69y=10896=24xy=12x=4Example 5
::例5Determine if the following triangles are similar. If so, explain why and write the similarity statement.
::确定以下三角形是否相似。 如果是, 请解释原因并写入相似语句 。We will need to find the ratios for the corresponding sides of the triangles and see if they are all the same. Start with the longest sides and work down to the shortest sides.
::我们需要找到三角形对应边的比重, 看看它们是否都一样。 从最长的边开始, 工作到最短的边。
::ACED=2135=35
::BCFD=1525=35
::ABEF=1020=12Since the ratios are not all the same, the triangles are not similar.
::由于比率不完全相同,三角形并不相似。Review
::回顾Fill in the blanks.
::填满空白。-
If all three sides in one triangle are __________________ to the three sides in another, then the two triangles are similar.
::如果一个三角形的所有三边 都在另一个三角形的三边, 那么两个三角形是相似的。 -
Two triangles are similar if the corresponding sides are _____________.
::两个三角形相似,如果对应的两边是 。
Use the following diagram for questions 3-5. The diagram is to scale.
::问题3-5使用下图。该图将缩放。-
Are the two triangles similar? Explain your answer.
::两个三角形相似吗? -
Are the two triangles congruent? Explain your answer.
::两个三角形一致吗? -
What is the scale factor for the two triangles?
::两个三角的尺度系数是多少?
Fill in the blanks in the statements below. Use the diagram to the left.
::填写以下语句中的空白。用图向左。-
_____
::* ABC * * ABC * * * ABC * * * ABC * * ABC * * * ABC * * * ABC * * * ABC * * ABC * * ABC * * ABC * * ABC * * * ABC * * * ABC * * -
::AB=BC=AC=AC=ABC=ABC=ABC=AC=ABC=ABC=AC=ABC=ABC=ABC=AC=ABC=ABC=ABC=ABC=ABC=ABC=AC? ABB=ABC=ABC=ABC=ABC? ABA? AB=ABC=ABC=ABC=AC? ABA? AB=ABA? AB=BC=ABC=AC=AC? ABA? AB? AB=BA? AB=BC=BC=ABC=AC=AC? AC? AB=ABA? AB=AB=AB=AB=BC=ABC=AC=AC? AC? AB? AB? AB=AB=BC=BC=ABC=AC=AC=AC? AC? AC? AB? AB? AB=AB? AB=AB=AB? AB=AB=AB=AB=ABAAA? AC? AC=AC? AC? AC? AC? AC? AC? AB? AB=AC? AB=AC? AB=AC? AB=AC? AB? AC? AB? AB? AB? AB=AB=AB=AB=AB=AB=AB=AB=AB=AB=AC? AC? AC? AC? AC? AC? AC? AB? AC? AC? AC? ABA? AC? -
If
had an altitude,
, what would be the length of altitude
?
::如果ABC有一个高度,AG=10, 高度长度是多少? -
Find the perimeter of
and
. Find the ratio of the perimeters.
::找到ZABC和ZDEF的周界 找出周界的比例
Use the diagram to the right for questions 10-15.
::用图向右看问题10-15。-
_____
::* ABC * * ABC * * * ABC * * * ABC * * ABC * * * ABC * * * ABC * * * ABC * * ABC * * ABC * * ABC * * ABC * * * ABC * * * ABC * * -
Why are the two triangles similar?
::为什么这两个三角形相似? -
Find
.
::寻找ED。 -
::BD? = BC=DE吗? -
Is
true?
::ADDB=CEEB是真的吗? -
Is
true?
::ADDB=ACDE是真的吗?
Find the value of the missing variable(s) that makes the two triangles similar. Assume the sides of length 18 and length 9 correspond to each other.
::查找使两个三角形相似的缺失变量值。 将长度 18 和 9 的两边相对应 。Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。Resources
::资源 -
If all three sides in one triangle are __________________ to the three sides in another, then the two triangles are similar.