7.10 具有角分部门的比例
Section outline
-
Angle Bisector Theorem
::角双两区定理When an angle within a triangle is bisected, the bisector divides the triangle proportionally. This idea is called the Angle Bisector Theorem .
::当三角形内的角被双切时, 分区会按比例分割三角形 。 这个想法叫做 Agle 双区定理 。Angle Bisector Theorem: If a ray bisects an angle of a triangle, then it divides the opposite side into segments that are proportional to the lengths of the other two sides.
::角双区定理:如果一射线两截成三角形角,则将对面分为与另外两侧长度成正比的区段。If , then .
::如果BACCAD,那么BCD=ABAD。What if you were told that a ray was an angle bisector of a triangle? How would you use this fact to find unknown values regarding the triangle's side lengths?
::如果有人告诉你射线是三角形的角角对角部分呢?你如何利用这个事实来发现三角形侧边长度的未知值?Examples
::实例Example 1
::例1Fill in the missing variable:
::填充缺失变量 :Set up a proportion and solve.
::设定一个比例并解决。
::20y=1528-yy15y=20(28-y)15y=560-20y35y=560y=16Example 2
::例2Fill in the missing variable:
::填充缺失变量 :Set up a proportion and solve.
::设定一个比例并解决。
::12z=159-z15z=12(9-z)15z=108=12z27z=108z=4Example 3
::例3Find .
::查找 x.The ray is the angle bisector and it splits the opposite side in the same ratio as the other two sides. The proportion is:
::射线是角度的对角,它与其他两边的对面以相同比例分裂。 比例是:
::9x=211421x=126x=6Example 4
::例4Find the value of that would make the proportion true.
::查找 x 的值, 使比例变为真实 。You can set up this proportion like the previous example.
::您可以像上一个示例一样设置此比例 。
::53=4x+11575=3(4x+1)75=12x+372=12x6=xExample 5
::例5Find the missing variable:
::查找缺失变量 :Set up a proportion and solve like in the previous examples.
::设置比例和解析, 如在前一例中 。
::124=x336=4xx=9Review
::回顾Find the value of the missing variable(s).
::查找缺失变量的值。Solve for the unknown variable. Round your answers to the nearest hundredths place.
::解决未知变量。 将您的答案转至最近的一百个位置 。Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。Resources
::资源 -