8.3 毕达哥里安神论的应用
Section outline
-
Applications of the Pythagorean Theorem
::毕达哥里安神论应用Find the Height of an Isosceles Triangle
::查找 Isosceles 三角的高度One way to use The Pythagorean Theorem is to find the height of an isosceles triangle (see Example 1).
::使用Pytagorean定理的一个方法就是找到等分形三角形的高度(见例1)。Prove the Distance Formula
::证明距离公式Another application of the Pythagorean Theorem is the Distance Formula. We will prove it here.
::Pytagoren定理的另一个应用是距离公式。我们将在这里证明它。Let’s start with point and point . We will call the distance between and .
::我们先从A(x1,y1)点和B(x2,y2)点开始,然后调用A与B(d)之间的距离。Draw the vertical and horizontal lengths to make a right triangle .
::绘制垂直和水平长度以建立右三角形。Now that we have a right triangle, we can use the Pythagorean Theorem to find the hypotenuse , .
::现在我们有一个正确的三角形, 我们可以利用毕达哥里安神话 来找到下限, d.
::d2=(x1-x2)2+(y1-y2)2+(y1-y2)2d=(x1-x2)2+(y1-y2)2+2Distance Formula: The distance between and is .
::距离公式: A( x1,y1) 和 B( x2,y2) 之间的距离是 d= (x1 - x2) 2+ (y1 -y2) 。Classify a Triangle as Acute, Right, or Obtuse
::三角形分类为急性、右或阻塞We can extend the to determine if a triangle is an obtuse or acute triangle .
::我们可以扩展三角形,以确定三角形是隐形还是尖形三角形。Acute Triangles: If the sum of the squares of the two shorter sides in a right triangle is greater than the square of the longest side, then the triangle is acute.
::急性三角形:如果右三角形中两个较短边的平方大于最长边的平方,则三角形为急性。For and , if , then the triangle is acute.
::b<c 和 a<c, 如果 a2+b2>c2, 那么三角形是急性的 。Obtuse Triangles: If the sum of the squares of the two shorter sides in a right triangle is less than the square of the longest side, then the triangle is obtuse.
::障碍三角:如果右三角形中两边短方的平方和小于最长边的平方,则三角形是模糊的。For and , if , then the triangle is obtuse.
::b<c 和 a<c, 如果 a2+b2 < c2, 那么三角形是模糊的 。What if you were given an in which all the sides measured 4 inches? How could you use the Pythagorean Theorem to find the triangle's ?
::假若你们获得一个四公分宽四英寸的柱子,你们怎能用毕达哥伦定理仪找到三角形呢?Examples
::实例Example 1
::例1What is the height of the isosceles triangle?
::等分形三角形的高度是多少?Draw the altitude from the vertex between the congruent sides, which will bisect the base.
::从相近两侧的顶端中绘制高度,使底部两分。
::72+h2=9249+h2=81h2=32h=32=16_2=42Example 2
::例2Find the distance between (1, 5) and (5, 2).
::查找(1,5)和(5,2)之间的距离。Make and . Plug into the distance formula.
::Make A( 1, 5) 和 B( 5, 2) 。 插入距离公式 。
::d=(1-5)2+(5-2)2=(-4)2+(3)2=16+9=25=5Just like the lengths of the sides of a triangle, distances are always positive.
::就像三角形两边的长度一样 距离总是正数Example 3
::例3Graph , and . Determine if is acute, obtuse, or right.
::图A(-4,1),B(3,8)和C(9,6),确定ABC是急性、延迟或右。Use the distance formula to find the length of each side.
::使用距离公式查找每侧的长度。
::AB=(-4-3)2+(1-8)2+(1-8)2=49+49=98BC=(3-9)2+(8-6)2=36+4=40AC=(-4-9)2+(1-6)2=169+25=194Plug these lengths into the Pythagorean Theorem.
::把这些长度插进毕达哥里安神话is an obtuse triangle .
::ABC是一个隐形三角形。For Examples 4 and 5, determine if the triangles are acute, right or obtuse.
::对于例4和例5,确定三角形是尖尖的、右的还是斜的。Example 4
::例4Set the longest side to .
::将最长的边设为 c 。The triangle is obtuse.
::三角形是模糊的。Example 5
::例5Set the longest side to .
::将最长的边设为 c 。A triangle with side lengths 5, 12, 13.
::侧长5,12,13的三角形so this triangle is right.
::52+122=132 所以三角形是对的Review
::回顾Find the height of each isosceles triangle below. Simplify all radicals.
::查找下方每个等分三角形的高度。 简化所有基体 。Find the length between each pair of points.
::查找每对点之间的长度。-
(-1, 6) and (7, 2)
:-1,6)和(7,2)
-
(10, -3) and (-12, -6)
:10,3)和(12,6)
-
(1, 3) and (-8, 16)
:第1款、第3款)和(第8条、第16条)
-
Standard definition TVs have a length and width ratio of 4:3. What are the length and width of a 42” Standard definition TV? Round your answer to the nearest tenth.
::标准定义电视的长度和宽度比例为4:3,42“标准定义电视”的长度和宽度是多少?
Determine whether the following triangles are acute, right or obtuse.
::确定以下三角形是尖锐的、右的还是隐蔽的。- 7, 8, 9
- 14, 48, 50
- 5, 12, 15
- 13, 84, 85
- 20, 20, 24
- 35, 40, 51
- 39, 80, 89
- 20, 21, 38
- 48, 55, 76
Graph each set of points and determine whether is acute, right, or obtuse, using the distance formula.
::使用距离公式, 绘制每组点数的图, 并确定 ABC 是急性、 右 、 或斜度 。-
::A(3,-5),B(-5,-8),C(-2,7) -
::A(5,3),B(2,-7),C(-1,5) -
::A(1,6,B(5,5,5),C(-2,3) -
::A(6)1,B(-4)-5,C(5)-2,A(6)1,B(-4)-5,C(5)-2
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。Resources
::资源 -