Section outline

  • Applications of the Pythagorean Theorem
    ::毕达哥里安神论应用

    Find the Height of an Isosceles Triangle
    ::查找 Isosceles 三角的高度

    One way to use The Pythagorean Theorem is to find the height of an isosceles triangle (see Example 1).
    ::使用Pytagorean定理的一个方法就是找到等分形三角形的高度(见例1)。

    Prove the Distance Formula
    ::证明距离公式

    Another application of the Pythagorean Theorem is the Distance Formula. We will prove it here.
    ::Pytagoren定理的另一个应用是距离公式。我们将在这里证明它。

    Let’s start with point A ( x 1 , y 1 ) and point B ( x 2 , y 2 ) . We will call the distance between A and B , d .
    ::我们先从A(x1,y1)点和B(x2,y2)点开始,然后调用A与B(d)之间的距离。

    Draw the vertical and horizontal lengths to make a right triangle .
    ::绘制垂直和水平长度以建立右三角形。

    Now that we have a right triangle, we can use the Pythagorean Theorem to find the hypotenuse , d .
    ::现在我们有一个正确的三角形, 我们可以利用毕达哥里安神话 来找到下限, d.

    d 2 = ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2 d = ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2

    ::d2=(x1-x2)2+(y1-y2)2+(y1-y2)2d=(x1-x2)2+(y1-y2)2+2

    Distance Formula: The distance between A ( x 1 , y 1 ) and B ( x 2 , y 2 ) is d = ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2 .
    ::距离公式: A( x1,y1) 和 B( x2,y2) 之间的距离是 d= (x1 - x2) 2+ (y1 -y2) 。

    Classify a Triangle as Acute, Right, or Obtuse
    ::三角形分类为急性、右或阻塞

    We can extend the to determine if a triangle is an obtuse or acute triangle .
    ::我们可以扩展三角形,以确定三角形是隐形还是尖形三角形。

    Acute Triangles: If the sum of the squares of the two shorter sides in a right triangle is greater than the square of the longest side, then the triangle is acute.
    ::急性三角形:如果右三角形中两个较短边的平方大于最长边的平方,则三角形为急性。

    For b < c and a < c , if a 2 + b 2 > c 2 , then the triangle is acute.
    ::b<c 和 a<c, 如果 a2+b2>c2, 那么三角形是急性的 。

    Obtuse Triangles: If the sum of the squares of the two shorter sides in a right triangle is less than the square of the longest side, then the triangle is obtuse.
    ::障碍三角:如果右三角形中两边短方的平方和小于最长边的平方,则三角形是模糊的。

    For b < c and a < c , if a 2 + b 2 < c 2 , then the triangle is obtuse.
    ::b<c 和 a<c, 如果 a2+b2 < c2, 那么三角形是模糊的 。

    What if you were given an in which all the sides measured 4 inches? How could you use the Pythagorean Theorem to find the triangle's ?
    ::假若你们获得一个四公分宽四英寸的柱子,你们怎能用毕达哥伦定理仪找到三角形呢?

    Examples
    ::实例

    Example 1
    ::例1

    What is the height of the isosceles triangle?
    ::等分形三角形的高度是多少?

    Draw the altitude from the vertex between the congruent sides, which will bisect the base.
    ::从相近两侧的顶端中绘制高度,使底部两分。

    7 2 + h 2 = 9 2 49 + h 2 = 81 h 2 = 32 h = 32 = 16 2 = 4 2

    ::72+h2=9249+h2=81h2=32h=32=16_2=42

    Example 2
    ::例2

    Find the distance between (1, 5) and (5, 2).
    ::查找(1,5)和(5,2)之间的距离。

    Make A ( 1 , 5 ) and B ( 5 , 2 ) . Plug into the distance formula.
    ::Make A( 1, 5) 和 B( 5, 2) 。 插入距离公式 。

    d = ( 1 5 ) 2 + ( 5 2 ) 2 = ( 4 ) 2 + ( 3 ) 2 = 16 + 9 = 25 = 5

    ::d=(1-5)2+(5-2)2=(-4)2+(3)2=16+9=25=5

    Just like the lengths of the sides of a triangle, distances are always positive.
    ::就像三角形两边的长度一样 距离总是正数

    Example 3
    ::例3

    Graph A ( 4 , 1 ) , B ( 3 , 8 ) , and C ( 9 , 6 ) . Determine if A B C is acute, obtuse, or right.
    ::图A(-4,1),B(3,8)和C(9,6),确定ABC是急性、延迟或右。

    Use the distance formula to find the length of each side.
    ::使用距离公式查找每侧的长度。

    A B = ( 4 3 ) 2 + ( 1 8 ) 2 = 49 + 49 = 98 B C = ( 3 9 ) 2 + ( 8 6 ) 2 = 36 + 4 = 40 A C = ( 4 9 ) 2 + ( 1 6 ) 2 = 169 + 25 = 194

    ::AB=(-4-3)2+(1-8)2+(1-8)2=49+49=98BC=(3-9)2+(8-6)2=36+4=40AC=(-4-9)2+(1-6)2=169+25=194

    Plug these lengths into the Pythagorean Theorem.
    ::把这些长度插进毕达哥里安神话

    ( 98 ) 2 + ( 40 ) 2   ?   ( 194 ) 2 98 + 40   ?   194 138 < 194

    A B C is an obtuse triangle .
    ::ABC是一个隐形三角形。

    For Examples 4 and 5, determine if the triangles are acute, right or obtuse.
    ::对于例4和例5,确定三角形是尖尖的、右的还是斜的。

    Example 4
    ::例4

    Set the longest side to c .
    ::将最长的边设为 c 。

    15 2 + 14 2   ?   21 2 225 + 196   ?   441 421 < 441

    The triangle is obtuse.
    ::三角形是模糊的。

    Example 5
    ::例5

    Set the longest side to  c .
    ::将最长的边设为 c 。

    A triangle with side lengths 5, 12, 13.
    ::侧长5,12,13的三角形

    5 2 + 12 2 = 13 2 so this triangle is right.
    ::52+122=132 所以三角形是对的

    Review
    ::回顾

    Find the height of each isosceles triangle below. Simplify all radicals.
    ::查找下方每个等分三角形的高度。 简化所有基体 。

    Find the length between each pair of points.
    ::查找每对点之间的长度。

    1. (-1, 6) and (7, 2)
      :sad-1,6)和(7,2)
    2. (10, -3) and (-12, -6)
      :sad10,3)和(12,6)
    3. (1, 3) and (-8, 16)
      :sad第1款、第3款)和(第8条、第16条)
    4. Standard definition TVs have a length and width ratio of 4:3. What are the length and width of a 42” Standard definition TV? Round your answer to the nearest tenth.
      ::标准定义电视的长度和宽度比例为4:3,42“标准定义电视”的长度和宽度是多少?

    Determine whether the following triangles are acute, right or obtuse.
    ::确定以下三角形是尖锐的、右的还是隐蔽的。

    1. 7, 8, 9
    2. 14, 48, 50
    3. 5, 12, 15
    4. 13, 84, 85
    5. 20, 20, 24
    6. 35, 40, 51
    7. 39, 80, 89
    8. 20, 21, 38
    9. 48, 55, 76

    Graph each set of points and determine whether A B C is acute, right, or obtuse, using the distance formula.
    ::使用距离公式, 绘制每组点数的图, 并确定 ABC 是急性、 右 、 或斜度 。

    1. A ( 3 , 5 ) , B ( 5 , 8 ) , C ( 2 , 7 )
      ::A(3,-5),B(-5,-8),C(-2,7)
    2. A ( 5 , 3 ) , B ( 2 , 7 ) , C ( 1 , 5 )
      ::A(5,3),B(2,-7),C(-1,5)
    3. A ( 1 , 6 ) , B ( 5 , 2 ) , C ( 2 , 3 )
      ::A(1,6,B(5,5,5),C(-2,3)
    4. A ( 6 , 1 ) , B ( 4 , 5 ) , C ( 5 , 2 )
      ::A(6)1,B(-4)-5,C(5)-2,A(6)1,B(-4)-5,C(5)-2

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源