Section outline

  • 45-45-90 Right Triangles
    ::45-45-90 右三角

    A right triangle with congruent legs and acute angles is an Isosceles Right Triangle . This triangle is also called a 45-45-90 triangle (named after the angle measures).
    ::右三角形,与腿和尖角相容,是Isosceles右三角形。这个三角形也称为45-45-90三角形(以角度量命名)。

    A B C is a right triangle with m A = 90 , A B ¯ A C ¯ and m B = m C = 45 .
    ::ABC是右三角形,与mA=90,AB=AC和mB=45。

    45-45-90 Theorem : If a right triangle is isosceles, then its sides are in the ratio x : x : x 2 . For any isosceles right triangle, the legs are x and the hypotenuse is always x 2 .
    ::45-45-90 理论论: 如果右三角为等分形,则其侧面在比率x:x:x2.中。 对于任何右三角的等分形,腿为x,下限始终为x2。

    What if you were given an isosceles right triangle and the length of one of its sides? How could you figure out the lengths of its other sides?
    ::假若你们获得一个右三角形和其两侧的长度的等分形,你们怎么知道那两侧的长度呢?

    Examples
    ::实例

    Example 1
    ::例1

    Find the length of x .
    ::查找 x 的长度。

    Use the  x : x : x 2  ratio.
    ::使用 x:x:x2 比例 。

    Here, we are given the hypotenuse. Solve for x in the ratio.
    ::在这里,我们得到了下限,在比例中解决 x 。

    x 2 = 16 x = 16 2 2 2 = 16 2 2 = 8 2

    ::x2=16x=162_22=1622=82

    Example 2
    ::例2

    Find the length of  x , where  x is the hypotenuse of a 45-45-90 triangle with leg lengths of 5 3 .
    ::查找 x 的长度, x 是45- 45- 90三角形的下拉值, 腿长为53。

    Use the x : x : x 2 ratio.
    ::使用 x:x:x2 比例 。

    x = 5 3 2 = 5 6
    ::x=532=56

    Example 3
    ::例3

    Find the length of the missing side.
    ::查找缺失方的长度 。

    Use the x : x : x 2 ratio. T V = 6 because it is equal to S T . So, S V = 6 2 = 6 2 .
    ::使用 x: x: x2 比率。 TV=6 因为它等于 ST. 所以, SV= 62= 62 。

    Example 4
    ::例4

    Find the length of the missing side.
    ::查找缺失方的长度 。

    Use the x : x : x 2 ratio. A B = 9 2 because it is equal to A C . So, B C = 9 2 2 = 9 2 = 18 .
    ::使用 x:x:x2 比率。 AB=92 因为它等于 AC。 所以, BC= 92_ 2= 9_2= 18。

    Example 5
    ::例5

    A square has a diagonal with length 10, what are the lengths of the sides?
    ::方形有对角线,长度10,两边的长度是多少?

    Draw a picture.
    ::画一张画。

    We know half of a square is a 45-45-90 triangle, so 10 = s 2 .
    ::我们知道半平方是45 -45 -90三角形 所以10=S2

    s 2 = 10 s = 10 2 2 2 = 10 2 2 = 5 2

    ::s2=10s=1022=1022=52

    Review
    ::回顾

    1. In an isosceles right triangle, if a leg is 4, then the hypotenuse is __________.
      ::在右三角形的等离子体中,如果一条腿是4,那么下限是。
    2. In an isosceles right triangle, if a leg is x , then the hypotenuse is __________.
      ::在右三角形的等离子体中,如果一条腿是x,则下限为。
    3. A square has sides of length 15. What is the length of the diagonal?
      ::方形有15长的两边,对角的长度是多少?
    4. A square’s diagonal is 22. What is the length of each side?
      ::方形对角是22, 每边的长度是多少?

    For questions 5-11, find the lengths of the missing sides. Simplify all radicals.
    ::问题5-11,找出失踪方的长度,简化所有激进分子。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源