Section outline

  • 30-60-90 Right Triangles
    ::30-60-90 右三角

    One of the two special right triangles is called a 30-60-90 triangle , after its three angles .
    ::两个特别右三角中有一个 叫做30-60-90三角, 沿着三个角度。

    30-60-90 Theorem : If a triangle has angle measures 30 , 60 and 90 , then the sides are in the ratio x : x 3 : 2 x .
    ::30 - 60 - 90 理论: 如果三角形角测量 30, 60 和 90, 那么两边的比值是 x: x3: 2x 。

    The shorter leg is always x , the longer leg is always x 3 , and the hypotenuse is always 2 x . If you ever forget these theorems, you can still use the Pythagorean Theorem .
    ::短腿总是 x, 长腿总是 x3, 低脚总是 2x。 如果您忘记这些定理, 您仍然可以使用 Pythagorean 定理 。

    What if you were given a 30-60-90 right triangle and the length of one of its side? How could you figure out the lengths of its other sides?
    ::如果你们获得一个30-60-90的右三角形,以及其中一方的长度呢?你们怎能知道另一边的长度呢?

    Examples
    ::实例

    Example 1
    ::例1

    Find the value of x and y .
    ::查找 x 和 y 的值。

    We are given the longer leg.
    ::我们得到了长腿。

    x 3 = 12 x = 12 3 3 3 = 12 3 3 = 4 3 The hypotenuse is y = 2 ( 4 3 ) = 8 3

    ::x3=12x=12333=1233=43 下限值为2(43)=83

    Example 2
    ::例2

    Find the value of  x  and  y .
    ::查找 x 和 y 的值。

    We are given the hypotenuse.
    ::我们被赋予了下限。

    2 x = 16 x = 8 The longer leg is y = 8 3 = 8 3

    ::2x=16x=8 长腿=83=83

    Example 3
    ::例3

    Find the length of the missing sides.
    ::查找缺失方的长度 。

    We are given the shorter leg. If x = 5 , then the longer leg, b = 5 3 , and the hypotenuse, c = 2 ( 5 ) = 10 .
    ::我们得到了短腿。 如果 x=5, 那么长腿, b=53, 和下限, c=2(5)=10。

    Example 4
    ::例4

    Find the length of the missing sides.
    ::查找缺失方的长度 。

    We are given the hypotenuse. 2 x = 20 , so the shorter leg, f = 20 2 = 10 , and the longer leg, g = 10 3 .
    ::2x=20,所以短腿F=202=10,长腿g=103。

    Example 5
    ::例5

    A rectangle has sides 4 and 4 3 . What is the length of the diagonal ?
    ::矩形有4和43两边,对角的长度是多少?

    If you are not given a picture, draw one.
    ::如果您没有获得图片,请绘制一张。

    The two lengths are x , x 3 , so the diagonal would be 2 x , or 2 ( 4 ) = 8 .
    ::两长为xx3,对角为2x或2(4)=8。

    If you did not recognize this is a 30-60-90 triangle, you can use the Pythagorean Theorem too.
    ::如果你没认出这是30 -60 -90三角形 你可以使用毕达哥伦神话

    4 2 + ( 4 3 ) 2 = d 2 16 + 48 = d 2 d = 64 = 8

    ::42+(43)2=d216+48=d2d=64=8

    Review
    ::回顾

    1. In a 30-60-90 triangle, if the shorter leg is 5, then the longer leg is __________ and the hypotenuse is ___________.
      ::在30-60-90三角形中,如果短腿为5,则长腿为________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    2. In a 30-60-90 triangle, if the shorter leg is x , then the longer leg is __________ and the hypotenuse is ___________.
      ::在30-60-90三角形中,如果短腿为x,则长腿为,下限为。
    3. A rectangle has sides of length 6 and 6 3 . What is the length of the diagonal?
      ::矩形有6和63长的两边,对角线的长度是多少?
    4. Two (opposite) sides of a rectangle are 10 and the diagonal is 20. What is the length of the other two sides?
      ::矩形的两面(对面)是10,对角是20,其他两面的长度是多少?

    For questions 5-12, find the lengths of the missing sides. Simplify all radicals.
    ::问题5 - 12, 找出失踪方的长度, 简化所有激进分子 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源