8.7 松、脊弦、唐
章节大纲
-
Sine, Cosine, and Tangent
::顺弦、顺弦和唐敏Trigonometry is the study of the relationships between the sides and angles of right triangles. The legs are called adjacent or opposite depending on which acute angle is being used.
::三角形是右三角形两侧和角之间的关系研究。 双腿被称为相邻或对立, 取决于使用的直角 。a is a d j a c e n t to ∠ B a is o p p o s i t e ∠ A b is a d j a c e n t to ∠ A b is o p p o s i t e ∠ B c is the h y p o t e n u s e
::a 与 B a 相邻 B a 相对 Ab 与 A b 相邻 Bc 是 下限The three basic trigonometric ratios are called sine, cosine and tangent. For right triangle △ A B C , we have:
::三个基本三角比被称为正弦、正弦和正弦。对于右三角 ABC,我们有:Sine Ratio: o p p o s i t e l e g h y p o t e n u s e sin A = a c or sin B = b c
::Sine 比率:对面腿血压Cosine Ratio: a d j a c e n t l e g h y p o t e n u s e cos A = b c or cos B = a c
::CosA=bc或cosB=acTangent Ratio: o p p o s i t e l e g a d j a c e n t l e g tan A = a b or tan B = b a
::倾角比率:对面腿相邻腿TanaA=ab或tanB=baAn easy way to remember ratios is to use SOH-CAH-TOA.
::使用SOH-CAH-TOA是记住比率的一个简单方法。A few important points:
::几个要点:-
Always
reduce ratios
(fractions) when you can.
::当您能够降低比率时,总是降低比率(违规)。 -
Use the
to find the missing side (if there is one).
::使用此方法查找缺失的一面( 如果有的话 ) 。 -
If there is a radical in the denominator,
rationalize the denominator.
::如果分母中有一个激进的分母,那么理顺分母。
What if you were given a right triangle and told that its sides measure 3, 4, and 5 inches? How could you find the sine, cosine, and tangent of one of the triangle's non-right angles?
::假若你们获得一个对立的三角形,并被告知其两侧的长度是3、4英寸和5英寸,你们怎能发现三角形上一个非对立角度的正弦、正弦和正弦呢?Examples
::实例Example 1
::例1Find the sine, cosine and tangent ratios of ∠ A .
::找到QA的正弦、连弦和正弦比例。First, we need to use the Pythagorean Theorem to find the length of the hypotenuse.
::首先,我们需要利用毕达哥里安神话 来找到低温的长度5 2 + 12 2 = c 2 13 = c sin A = l e g o p p o s i t e ∠ A h y p o t e n u s e = 12 13 cos A = l e g a d j a c e n t t o ∠ A h y p o t e n u s e = 5 13 , tan A = l e g o p p o s i t e ∠ A l e g a d j a c e n t t o ∠ A = 12 5
::52+122=c213=csinA=对面的Aleg @ahypotenuse=1213cosA=靠近@Ahypotenuse=513,tanA=对面的Aleg=@A=125Example 2
::例2Find the sine, cosine, and tangent of ∠ B .
::找到ZB的正弦、连弦和正弦Find the length of the missing side.
::查找缺失方的长度 。A C 2 + 5 2 = 15 2 A C 2 = 200 A C = 10 √ 2 sin B = 10 √ 2 15 = 2 √ 2 3 cos B = 5 15 = 1 3 tan B = 10 √ 2 5 = 2 √ 2
::AC2+52=152AC2=200AC=102sinB=10215=223cosB=515=13tanB=1025=22Example 3
::例3Find the sine, cosine and tangent of 30 ∘ .
::找到正弦,连弦和正弦 30。This is a 30-60-90 triangle. The short leg is 6, y = 6 √ 3 and x = 12 .
::这是一个 30 - 60 - 90 三角形。 短腿是 6 y= 6 - 3 和 x= 12 。sin 30 ∘ = 6 12 = 1 2 cos 30 ∘ = 6 √ 3 12 = √ 3 2 tan 30 ∘ = 6 6 √ 3 = 1 √ 3 ⋅ √ 3 √ 3 = √ 3 3
::612=12cos30 631232tan30663=13333333Example 4
::例4Answer the questions about the following image. Reduce all fractions.
::回答关于以下图像的问题。 减少所有分数 。What is sin A , cos A , and tan A ?
::什么是罪A,CASA和TANA?sin A = 16 20 = 4 5
::A=1620=45cos A = 12 20 = 3 5
::COA=1220=35tan A = 16 12 = 4 3
::tanA=1612=43Review
::回顾Use the diagram to fill in the blanks below.
::使用图表填充下面的空白。-
tan
D
=
?
?
::丹达? -
sin
F
=
?
?
::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么? -
tan
F
=
?
?
::晒屁股? -
cos
F
=
?
?
::科斯菲? ? -
sin
D
=
?
?
::罪过? -
cos
D
=
?
?
::- COSD? - 是的。 - COSD?
From questions 1-6, we can conclude the following. Fill in the blanks.
::从问题1至6中,我们可以得出以下结论。填写空白。-
cos
_
=
sin
F
and
sin
_
=
cos
F
.
::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}CosinF 和sincosF {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我... -
tan
D
and
tan
F
are _________ of each other.
::相形相形,相形见绌
Find the sine, cosine and tangent of ∠ A . Reduce all fractions and radicals.
::找到QA的正弦、正弦和正弦。 减少所有分数和基数。Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。Resources
::资源 -
Always
reduce ratios
(fractions) when you can.