Section outline

  • Tangent Line Theorems
    ::切切线线定理

    There are two important theorems about tangent lines.
    ::有两条重要的理论 是关于正切线的

    1.  Tangent to a Circle Theorem : A line is tangent to a circle if and only if the line is perpendicular to the radius drawn to the point of tangency .
    ::1. 圆形定理的切线:线与圆形的切线相切,条件是且只有在线线与划入正切点的半径垂直。

    B C is tangent at point B if and only if B C ¯ A B .
    ::BC在B点是相切的,如果,而且只有在BCABA的情况下。

    This theorem uses the words “if and only if,” making it a biconditional statement , which means the converse of this theorem is also true.
    ::这一定理使用了“如果而且只有在”等字,使该定理成为两条条件的声明,这意味着该定理的反义也是真实的。

    2.  Two Tangents Theorem: If two tangent segments are drawn to one circle from the same external point, then they are congruent .
    ::2. 两个切线定理:如果从同一个外部点将两个正切区段划为一个圆形,那么它们就是相同的。

    ¯ B C and ¯ D C have C as an endpoint and are tangent; ¯ B C ¯ D C .
    ::BC和CC是终点,相切; BC和C是终点; BC。

    What if a line were drawn outside a circle that appeared to touch the circle at only one point? How could you determine if that line were actually a tangent?
    ::如果一条线是在似乎只触及圆点的圆外划出的,那又如何?你如何确定这条线是否实际是相左线呢?

    Examples
    ::实例

    Example 1
    ::例1

    Determine if the triangle below is a right triangle .
    ::确定下方三角形是否为右三角形。

    Use . 4 10 is the longest side, so it will be c .
    ::使用 。 410 是最长的一面, 所以这将是 c 。

    Does 8 2 + 10 2   =   ( 4 10 ) 2 ? 64 + 100 160


    ::82+102=(410)2?64+100=160

    A B C is not a right triangle. From this, we also find that ¯ C B is not tangent to A .
    ::ABC不是一个正确的三角形,

    Example 2
    ::例2

    If D and C are the centers and A E is tangent to both circles, find D C .
    ::如果D和C是中心 而AE对双方都不同 找到DC

    ¯ A E ¯ D E and ¯ A E ¯ A C and A B C D B E by .
    ::和AEAC和ABCDBE的到来。

    To find D B , use the Pythagorean Theorem.
    ::找到DB,使用毕达哥里安神话

    10 2 + 24 2 = D B 2 100 + 576 = 676 D B = 676 = 26


    ::102+242=DB2100+576=676DB=676=26

    To find B C , use similar triangles . 5 10 = B C 26 B C = 13.   D C = D B + B C = 26 + 13 = 39
    ::要找到 BBC, 请使用类似的三角形 。 510= BC26BC=13。 DC=DB+BC=26+13=39

    Example 3
    ::例3

    ¯ C B is tangent to A at point B . Find A C . Reduce any radicals.
    ::CB与B点的A相切 找到AC 减少任何激进分子

    ¯ C B is tangent, so ¯ A B ¯ C B and A B C a right triangle. Use the Pythagorean Theorem to find A C .
    ::CB是正切的,所以ABC和ABC是右三角。使用毕达哥伦理论来找到AC。

    5 2 + 8 2 = A C 2 25 + 64 = A C 2 89 = A C 2 A C = 89


    ::52+82=AC225+64=AC289=AC2AC_89

    Example 4
    ::例4

    Using the answer from Example A above, find D C in A . Round your answer to the nearest hundredth.
    ::使用上文例A的回答, 请在 QA 中找到 DC。 将您的回答回溯到最近的第一百次 。

    D C = A C A D D C = 89 5 4.43


    ::DC=AC-ADDC 89-54.43

    Example 5
    ::例5

    Find the perimeter of A B C .
    ::找到ABC的周边

    A E = A D ,   E B = B F , and C F = C D . Therefore, the perimeter of A B C = 6 + 6 + 4 + 4 + 7 + 7 = 34 .
    ::AE=AD,EB=BF,CF=CD。因此,ZABC=6+6+4+4+4+7+7=34的周界。

    G is inscribed in A B C . A circle is inscribed in a polygon if every side of the polygon is tangent to the circle.
    ::ABC 中输入了 G。如果多边形的每一面与圆正切,则在多边形中输入一个圆。

    Review
    ::回顾

    Determine whether the given segment is tangent to K .
    ::确定给定的区段是否正切到 _K 。

    Find the value of the indicated length(s) in C . A and B are points of tangency. Simplify all radicals.
    ::查找 QC. A 和 B 中标明的长度值是相切点。 简化所有基体 。

    A and B are points of tangency for C and D .
    ::A和B是C和D的切合点。

    1. Is A E C B E D ? Why?
      ::为什么?
    2. Find C E .
      ::找CE,找CE,找CE,找CE,找CE,找CE,找CE,找CE,找CE,找CE,找CE,找CE,找CE,找CE,找CE,找CE,找CE,找CE,找CE,找CE
    3. Find B E .
      ::寻找BE。
    4. Find E D .
      ::寻找ED。
    5. Find B C and A D .
      ::找到BC和AD

    A is inscribed in B D F H .
    ::A以BDFH登记。

    1. Draw a circle inscribed in a square. If the radius of the circle is 5, what is the perimeter of the square?
      ::绘制在方形中标注的圆。如果圆的半径是 5,则方形的周界是什么?
    2. Can a circle be inscribed in a rectangle? If so, draw it. If not, explain.
      ::一个圆可以嵌入矩形吗?如果可以,请绘制。如果没有,请解释。
    3. Draw a triangle with two sides tangent to a circle, but the third side is not.
      ::绘制三角形,将两面切换为圆,但第三面不是。
    4. Can a circle be inscribed in an obtuse triangle? If so, draw it. If not, explain.
      ::一个圆可以刻在隐形三角形中吗? 如果是, 请绘制它。 如果没有, 请解释 。
    5. Fill in the blanks in the proof of the Two Tangents Theorem.
      ::填满两个丹根人理论的 证据中的空白

    Given : ¯ A B and ¯ C B with points of tangency at A and C . ¯ A D and ¯ D C are radii.
    ::参考:A.C.A.A.A.A.和C.C.C.C.

    Prove : ¯ A B ¯ C B
    ::证明:

    Statement Reason
    1. 1.
    2. ¯ A D ¯ D C 2.
    3. ¯ D A ¯ A B and ¯ D C ¯ C B 3.
    4. 4. Definition of perpendicular lines
    5. 5. Connecting two existing points
    6. A D B and D C B are right triangles 6.
    7. ¯ D B ¯ D B 7.
    8. A B D C B D 8.
    9. ¯ A B ¯ C B 9.
    1. Fill in the blanks, using the proof from #21.
      1. A B C D is a _____________ (type of quadrilateral).
        ::ABCD是一种(四边形类型)。
      2. The line that connects the ___________ and the external point B __________ A B C .
        ::连接 和 外部点 B ABC 的线条。

      ::填入空白, 使用 # 21 的证明 。 ABCD 是 (四边形的类型) 。 连接 和 外部点 B ABC 的线 。
    2. Points A ,   B , and C are points of tangency for the three tangent circles. Explain why ¯ A T ¯ B T ¯ C T .
      ::A点、B点和C点是三个相近的圈子的相切点。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源