章节大纲

  • Inscribed Quadrilaterals in Circles
    ::在圆圆中给定的四方

    An inscribed polygon is a polygon where every vertex is on the circle , as shown below.
    ::刻录的多边形是多边形,每个顶点都在圆上,如下文所示。

    For inscribed quadrilaterals in particular, the opposite angles will always be supplementary.
    ::特别是对于特定四边形而言,相反的角度总是补充性的。

    Inscribed Quadrilateral Theorem : A quadrilateral can be inscribed in a circle if and only if the opposite angles are supplementary.
    ::给定的四方定理:如果而且只有在相反角度是补充的时,四边形才能在圆内标注。

    If A B C D is inscribed in E , then m A + m C = 180 and m B + m D = 180 . Conversely, If m A + m C = 180 and m B + m D = 180 , then A B C D is inscribed in E .
    ::如果 ABCD 在 E 中注册, 那么 mA+mC=180 和 mB+mD=180 。 相反, 如果 mA+mC=180 和 mB+mD=180 , 那么 ABCD 则在 E 中注册 。

    What if you were given a circle with a quadrilateral inscribed in it? How could you use information about the arcs formed by the quadrilateral and/or the quadrilateral's angle measures to find the measure of the unknown quadrilateral angles?
    ::如果给您一个圆并刻上四边形呢? 您如何使用由四边形和(或)四边形角度措施形成的弧的信息来找到未知四边形角度的量度?

    Examples
    ::实例

    Example 1
    ::例1

    Find the values of the missing variables.
    ::查找缺失变量的值。

    x + 80 = 180 y + 71 = 180 x = 100 y = 109


    ::x+80180y+71180x=100y=109

    1.  
      z + 93 = 180 x = 1 2 ( 58 + 106 ) y + 82 = 180 z = 87 x = 82 y = 98

      ::z+93180x=12(58106)y+82180z=87x=82y=98

    Example 2
    ::例2

    Find x and y in the picture below.
    ::在下面的图片中查找 x 和 y 。

    ( 7 x + 1 ) + 105 = 180 ( 4 y + 14 ) + ( 7 y + 1 ) = 180 7 x + 106 = 180   11 y + 15 = 180 7 x = 74 11 y = 165 x = 10.57 y = 15


    :伤心7x+1) 105 180(4y+14) (7y+1) 1807x+10618011y+15180187x=7411y=165x=10.57y=15)

    Example 3
    ::例3

    Find the values of x and y in A .
    ::在 A 中查找 x 和 y 的值。

    Use the Inscribed Quadrilateral Theorem. x + 108 = 180 so x = 72 . Similarly, y + 88 = 180 so y = 92 .
    ::使用给定的四方论。 x108180@ so x=72。 类似地,y88180@y=92。

    Example 4
    ::例4

    Quadrilateral A B C D is inscribed in E . Find  m A m B m C , and  m D .
    ::“四边形ABCD”在“E. find mA, mB, mC, and mD.”中刻录。

    First, note that m ^ A D = 105 because the complete circle must add up to 360 .
    ::首先,请注意 mAD=105,因为整圆必须加到360。

    m A = 1 2 m ^ B D = 1 2 ( 115 + 86 ) = 100.5
    ::mA=12mBD=12(115+86)=100.5

    m B = 1 2 m ^ A C = 1 2 ( 86 + 105 ) = 95.5
    ::mB=12mAC=12(86+105)=95.5

    m C = 180 m A = 180 100.5 = 79.5
    ::mC=180mA=180100.579.5

    m D = 180 m B = 180 95.5 = 84.5
    ::mD=180mB=18095584.5

    Review
    ::回顾

    Fill in the blanks.
    ::填满空白。

    1. A "> ( n ) _______________ polygon has all its vertices on a circle.
      ::A否 多边形在圆上具有全部的顶点。
    2. The _____________ angles of an inscribed quadrilateral are ________________.
      ::一个四边形的 角度是 。

    Quadrilateral A B C D is inscribed in E . Find:
    ::E 中刻录了四边形 ABCD。 查找 :

    1. m D B C
      ::mDBC
    2. m ^ B C
      ::立方米( mZZZBC)
    3. m ^ A B
      ::m AB
    4. m A C D
      ::mACD
    5. m A D C
      ::mADC
    6. m A C B
      ::mACB( mACB)

    Find the value of x and/or y in A .
    ::在 {A} 中查找 x 和/或 y 值。

    Solve for x .
    ::解决x。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。