Section outline

  • Segments from Secants and Tangents
    ::定点和定点的线段

    If a tangent and secant meet at a common point outside a circle , the segments created have a similar relationship to that of two secant rays.
    ::如果偏差和偏差在一个圆圈外的共同点相会,所设立的区段与两个分离线具有类似关系。

    Tangent Secant Segment Theorem : If a tangent and a secant are drawn from a common point outside the circle (and the segments are labeled like the picture below), then a 2 = b ( b + c ) .
    ::Tang Secant 段定理 : 如果从圆外的一个共同点抽出正切线和分离线(各段的标签与下图相类似), 那么 a2=b(b+c) 。

    What if you were given a circle with a tangent and a secant that intersect outside the circle? How could you use the length of some of the segments formed by their intersection to determine the lengths of the unknown segments?
    ::如果给您一个圆形,有正切和断层,在圆外交错,又如何呢?您如何使用通过交叉点形成的部分的长度来决定未知部分的长度?

    Examples
    ::实例

    Example 1
    ::例1

    Find x . Simplify any radicals.
    ::查找 x. 简化任何基数 。

    Use the Tangent Secant Segment Theorem.
    ::使用唐氏断层线段定理 。

    18 2 = 10 ( 10 + x ) 324 = 100 + 10 x 224 = 10 x x = 22.4

    ::182=10(10+x)324=100+10x224=10xx=22.4

    Example 2
    ::例2

    Find  x . Simplify any radicals.
    ::查找 x. 简化任何基数 。

    Use the Tangent Secant Segment Theorem.
    ::使用唐氏断层线段定理 。

    x 2 = 16 ( 16 + 25 ) x 2 = 656 x = 4 41

    ::x2=16( 16+25) x2=656x=441

    Example 3
    ::例3

    Find the length of the missing segment.
    ::查找缺失段的长度 。

    Use the Tangent Secant Segment Theorem.
    ::使用唐氏断层线段定理 。

    x 2 = 4 ( 4 + 12 ) x 2 = 4 16 = 64 x = 8

    ::x2=4( 4+12) x2=416=64x=8

    Example 4
    ::例4

    Fill in the blank and then solve for the missing segment.
    ::填入空白,然后解答缺失的段段 。

    _ = _ ( 4 + 5 )

    x 2 = 4 ( 4 + 5 ) x 2 = 36 x = 6

    ::x2=4( 4+5) x2=36x=6

    Example 5
    ::例5

    Find the value of the missing segment.
    ::查找缺失段的值 。

    Use the Tangent Secant Segment Theorem.
    ::使用唐氏断层线段定理 。

    20 2 = y ( y + 30 ) 400 = y 2 + 30 y 0 = y 2 + 30 y 400 0 = ( y + 40 ) ( y 10 ) y = 40 , 10

    ::202=y(y+3040)400=y2+30y0=y2+30y-400=(y+40)(y-10y_40)40,10

    Review
    ::回顾

    Fill in the blanks for each problem below and then solve for the missing segment.
    ::填写下面每个问题的空白,然后解决缺失的部分。

    10 2 = x ( _ + _ )
    ::102=x()

    Find x in each diagram below. Simplify any radicals.
    ::在下图中查找 x。 简化任何基数 。

    1. Describe and correct the error in finding y .
      10 10 = y 15 y 100 = 15 y 2 20 3 = y 2 2 15 3 = y   y   is \underline{not} correct

      ::描述并更正查找 y. 10\ 10=y15y100=15y2203=y22153=yy y是\ underline{ not} 错误的描述并更正错误

    Solve for the unknown variable. Round your answer to the nearest tenths place.
    ::解决未知变量。 将您的答案转至最近的十分位 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。