9.11 封存物和切入物的片段
Section outline
-
Segments from Secants and Tangents
::定点和定点的线段If a tangent and secant meet at a common point outside a circle , the segments created have a similar relationship to that of two secant rays.
::如果偏差和偏差在一个圆圈外的共同点相会,所设立的区段与两个分离线具有类似关系。Tangent Secant Segment Theorem : If a tangent and a secant are drawn from a common point outside the circle (and the segments are labeled like the picture below), then .
::Tang Secant 段定理 : 如果从圆外的一个共同点抽出正切线和分离线(各段的标签与下图相类似), 那么 a2=b(b+c) 。What if you were given a circle with a tangent and a secant that intersect outside the circle? How could you use the length of some of the segments formed by their intersection to determine the lengths of the unknown segments?
::如果给您一个圆形,有正切和断层,在圆外交错,又如何呢?您如何使用通过交叉点形成的部分的长度来决定未知部分的长度?Examples
::实例Example 1
::例1Find . Simplify any radicals.
::查找 x. 简化任何基数 。Use the Tangent Secant Segment Theorem.
::使用唐氏断层线段定理 。
::182=10(10+x)324=100+10x224=10xx=22.4Example 2
::例2Find . Simplify any radicals.
::查找 x. 简化任何基数 。Use the Tangent Secant Segment Theorem.
::使用唐氏断层线段定理 。
::x2=16( 16+25) x2=656x=441Example 3
::例3Find the length of the missing segment.
::查找缺失段的长度 。Use the Tangent Secant Segment Theorem.
::使用唐氏断层线段定理 。
::x2=4( 4+12) x2=416=64x=8Example 4
::例4Fill in the blank and then solve for the missing segment.
::填入空白,然后解答缺失的段段 。
::x2=4( 4+5) x2=36x=6Example 5
::例5Find the value of the missing segment.
::查找缺失段的值 。Use the Tangent Secant Segment Theorem.
::使用唐氏断层线段定理 。
::202=y(y+3040)400=y2+30y0=y2+30y-400=(y+40)(y-10y_40)40,10Review
::回顾Fill in the blanks for each problem below and then solve for the missing segment.
::填写下面每个问题的空白,然后解决缺失的部分。
::102=x()Find in each diagram below. Simplify any radicals.
::在下图中查找 x。 简化任何基数 。-
-
-
-
Describe and correct the error in finding
.
::描述并更正查找 y. 10\ 10=y15y100=15y2203=y22153=yy y是\ underline{ not} 错误的描述并更正错误
Solve for the unknown variable. Round your answer to the nearest tenths place.
::解决未知变量。 将您的答案转至最近的十分位 。Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -