9.12 坐标平板中的圆圈
Section outline
-
Circles in the Coordinate Plane
::坐标平面中的圆圈Recall that a circle is the set of all points in a plane that are the same distance from the center . This definition can be used to find an equation of a circle in the coordinate plane.
::回顾一个圆是一个平面中所有点的集合, 与中点的距离相同。 此定义可用于在坐标平面中找到圆的方程式 。Let’s start with the circle centered at (0, 0). If is a point on the circle, then the distance from the center to this point would be the radius , . is the horizontal distance and is the vertical distance. This forms a right triangle . From the Pythagorean Theorem , the equation of a circle centered at the origin is .
::让我们从圆的中心点( 0, 0) 开始, 如果( x,y) 是圆的一个点, 那么从中间到这个点的距离将是半径, r. x 是水平距离, y 是垂直距离。 这形成一个右三角。 从 Pytagoren 理论, 圆的中心方程式是 x2+y2=r2 。The center does not always have to be on (0, 0). If it is not, then we label the center . We would then use the Distance Formula to find the length of the radius.
::中心不一定总是在( 0, 0) 上。 如果不是的话, 我们给中心贴上标签( h, k) 。 然后我们用距离公式来找到半径的长度 。
::r=(x-h)2+(y-k)2If you square both sides of this equation, then you would have the standard equation of a circle. The standard equation of a circle with center and radius is .
::如果您在此方程的两侧平方, 则您将拥有圆的标准方程。 圆的中心( h, k) 和半径 r 的标准方程是 r2=( x- h) 2+(y- k) 2。What if you were given the length of the radius of a circle and the coordinates of its center? How could you write the equation of the circle in the coordinate plane?
::如果给您给出圆半径的长度及其中心坐标, 您如何在坐标平面中写出圆的方程 ?Examples
::实例Example 1
::例1Find the center and radius of the following circle.
::查找以下圆的中间和半径。
:x+2)2+(y-5)2=49
Rewrite the equation as . The center is (-2, 5) and .
::将方程重写为 (x- (-2)) 2+(y-5) 2=72。中心是 (-2) 5 和 r= 7。Keep in mind that, due to the minus signs in the formula, the coordinates of the center have the opposite signs of what they may initially appear to be.
::记住,由于公式中的减号,中心的坐标与最初看起来的相形见绌。Example 2
::例2Find the center and radius of the following circle.
::查找以下圆的中间和半径。Find the equation of the circle with center (4, -1) and which passes through (-1, 2).
::查找圆形的方程式,以中间( 4, - 1) 和中间( 1, 2) 通过中间( 1, 2) 。First plug in the center to the standard equation.
::标准方程式中心的第一个插头
:x-4)2+(y-(-1))2=r2(x-4)2+(y+1)2=r2
Now, plug in (-1, 2) for and and solve for .
::现在, x 和 y 的插件 (-1, 2) 插入, r 的解答 。
:-1-4)2+(2+1)2=r2(-5)2+(3)2=r225+9=r234=r2
Substituting in 34 for , the equation is .
::方程(x-4)2+(y+1)2=34。Example 3
::例3Graph .
::图x2+y2=9。The center is (0, 0). Its radius is the square root of 9, or 3. Plot the center, plot the points that are 3 units to the right, left, up, and down from the center and then connect these four points to form a circle.
::中心为 0,0 半径为 9 或 3. 平方根 。 绘制中心, 绘制向右、 左、 上、 从中向下 3 个单位的点, 然后将这4 个点连接到圆形 。Example 4
::例4Find the equation of the circle below.
::查找下方圆的方程式。First locate the center. Draw in the horizontal and vertical diameters to see where they intersect.
::首先定位中心。 绘制水平和垂直直径以查看它们相交的位置 。From this, we see that the center is (-3, 3). If we count the units from the center to the circle on either of these diameters, we find . Plugging this into the equation of a circle, we get: or .
::我们从中可以看到中心是 (3,3,3) 。如果我们从中间点数到这些直径的圆形,我们就会发现 r=6. 将它插进圆形的方程中,我们就会得到x-(3))2+(y-3)2+(y-3)2=62或(x+3)2+(y-3)2=36。
Example 5
::例5Determine if the following points are on .
::确定以下各点是否在(x+1)2+(y-5)2=50上。Plug in the points for and in .
::插入点xandyin(x+1)2+(y-5)2=50。-
(8, -3)
(8, -3) is not on the circle
:8, 3) 在圆上
-
(-2, -2)
(-2, -2) is on the circle
:-2, 2) 在圆圈上
Review
::回顾Find the center and radius of each circle. Then, graph each circle.
::查找每个圆的中间和半径。然后,绘制每个圆的图。-
:x+5)2+(y-3)2=16
-
::x2+(y+8)2=4 -
:-7)2+(y-10)2=20
-
:x+2)2+y2=8
Find the equation of the circles below.
::找到下面圆圈的方程-
-
-
-
-
Is (-7, 3) on
?
:7,3)在(x+1)2+(y-6)2=45上吗?
-
Is (9, -1) on
?
:9,-1)在(x-2)2+(y-2)2=60上吗?
-
Is (-4, -3) on
?
:4)-3在(x+3)2+(y-3)2=37上吗?
-
Is (5, -3) on
?
:5,3)在(x+1)2+(y-6)2=45上吗?
Find the equation of the circle with the given center and point on the circle.
::查找圆的方程式,在圆上找到给定的中心点。-
center: (2, 3), point: (-4, -1)
::中心2,3),点
4,4,1)
-
center: (10, 0), point: (5, 2)
::中枢: (10,0) 点: (5,2) -
center: (-3, 8), point: (7, -2)
::中心3,8),点
7,2)
-
center: (6, -6), point: (-9, 4)
::中中6,6,-6),点
9,4)
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
(8, -3)