Section outline

  • Circles in the Coordinate Plane
    ::坐标平面中的圆圈

    Recall that a circle is the set of all points in a plane that are the same distance from the center . This definition can be used to find an equation of a circle in the coordinate plane.
    ::回顾一个圆是一个平面中所有点的集合, 与中点的距离相同。 此定义可用于在坐标平面中找到圆的方程式 。

    Let’s start with the circle centered at (0, 0). If ( x , y ) is a point on the circle, then the distance from the center to this point would be the radius , r . x is the horizontal distance and y is the vertical distance. This forms a right triangle . From the Pythagorean Theorem , the equation of a circle centered at the origin is x 2 + y 2 = r 2 .
    ::让我们从圆的中心点( 0, 0) 开始, 如果( x,y) 是圆的一个点, 那么从中间到这个点的距离将是半径, r. x 是水平距离, y 是垂直距离。 这形成一个右三角。 从 Pytagoren 理论, 圆的中心方程式是 x2+y2=r2 。

    The center does not always have to be on (0, 0). If it is not, then we label the center ( h , k ) . We would then use the Distance Formula to find the length of the radius.
    ::中心不一定总是在( 0, 0) 上。 如果不是的话, 我们给中心贴上标签( h, k) 。 然后我们用距离公式来找到半径的长度 。

    r = ( x h ) 2 + ( y k ) 2

    ::r=(x-h)2+(y-k)2

    If you square both sides of this equation, then you would have the standard equation of a circle. The standard equation of a circle with center ( h , k ) and radius r is r 2 = ( x h ) 2 + ( y k ) 2 .
    ::如果您在此方程的两侧平方, 则您将拥有圆的标准方程。 圆的中心( h, k) 和半径 r 的标准方程是 r2=( x- h) 2+(y- k) 2。

    What if you were given the length of the radius of a circle and the coordinates of its center? How could you write the equation of the circle in the coordinate plane?
    ::如果给您给出圆半径的长度及其中心坐标, 您如何在坐标平面中写出圆的方程 ?

    Examples
    ::实例

    Example 1
    ::例1

    Find the center and radius of the following circle.
    ::查找以下圆的中间和半径。

    ( x + 2 ) 2 + ( y 5 ) 2 = 49
    :sadx+2)2+(y-5)2=49

    Rewrite the equation as ( x ( 2 ) ) 2 + ( y 5 ) 2 = 7 2 . The center is (-2, 5) and r = 7 .
    ::将方程重写为 (x- (-2)) 2+(y-5) 2=72。中心是 (-2) 5 和 r= 7。

    Keep in mind that, due to the minus signs in the formula, the coordinates of the center have the opposite signs of what they may initially appear to be.
    ::记住,由于公式中的减号,中心的坐标与最初看起来的相形见绌。

    Example 2
    ::例2

    Find the center and radius of the following circle.
    ::查找以下圆的中间和半径。

    Find the equation of the circle with center (4, -1) and which passes through (-1, 2).
    ::查找圆形的方程式,以中间( 4, - 1) 和中间( 1, 2) 通过中间( 1, 2) 。

    First plug in the center to the standard equation.
    ::标准方程式中心的第一个插头

    ( x 4 ) 2 + ( y ( 1 ) ) 2 = r 2 ( x 4 ) 2 + ( y + 1 ) 2 = r 2

    :sadx-4)2+(y-(-1))2=r2(x-4)2+(y+1)2=r2

    Now, plug in (-1, 2) for x and y and solve for r .
    ::现在, x 和 y 的插件 (-1, 2) 插入, r 的解答 。

    ( 1 4 ) 2 + ( 2 + 1 ) 2 = r 2 ( 5 ) 2 + ( 3 ) 2 = r 2 25 + 9 = r 2 34 = r 2

    :sad-1-4)2+(2+1)2=r2(-5)2+(3)2=r225+9=r234=r2

    Substituting in 34 for r 2 , the equation is ( x 4 ) 2 + ( y + 1 ) 2 = 34 .
    ::方程(x-4)2+(y+1)2=34。

    Example 3
    ::例3

    Graph x 2 + y 2 = 9 .
    ::图x2+y2=9。

    The center is (0, 0). Its radius is the square root of 9, or 3. Plot the center, plot the points that are 3 units to the right, left, up, and down from the center and then connect these four points to form a circle.
    ::中心为 0,0 半径为 9 或 3. 平方根 。 绘制中心, 绘制向右、 左、 上、 从中向下 3 个单位的点, 然后将这4 个点连接到圆形 。

    Example 4
    ::例4

    Find the equation of the circle below.
    ::查找下方圆的方程式。

    First locate the center. Draw in the horizontal and vertical diameters to see where they intersect. 
    ::首先定位中心。 绘制水平和垂直直径以查看它们相交的位置 。

    From this, we see that the center is (-3, 3). If we count the units from the center to the circle on either of these diameters, we find r = 6 . Plugging this into the equation of a circle, we get: ( x ( 3 ) ) 2 + ( y 3 ) 2 = 6 2 or ( x + 3 ) 2 + ( y 3 ) 2 = 36 .
    ::我们从中可以看到中心是 (3,3,3) 。如果我们从中间点数到这些直径的圆形,我们就会发现 r=6. 将它插进圆形的方程中,我们就会得到sadx-(3))2+(y-3)2+(y-3)2=62或(x+3)2+(y-3)2=36。

    Example 5
    ::例5

    Determine if the following points are on ( x + 1 ) 2 + ( y 5 ) 2 = 50 .
    ::确定以下各点是否在(x+1)2+(y-5)2=50上。

    Plug in the points for x and y in ( x + 1 ) 2 + ( y 5 ) 2 = 50 .
    ::插入点xandyin(x+1)2+(y-5)2=50。

    1. (8, -3)
      ( 8 + 1 ) 2 + ( 3 5 ) 2 = 50 9 2 + ( 8 ) 2 = 50 81 + 64 50

     (8, -3) is not on the circle
    :sad8, 3) 在圆上

    1. (-2, -2)
      ( 2 + 1 ) 2 + ( 2 5 ) 2 = 50 ( 1 ) 2 + ( 7 ) 2 = 50 1 + 49 = 50

     (-2, -2) is on the circle
    :sad-2, 2) 在圆圈上

    Review
    ::回顾

    Find the center and radius of each circle. Then, graph each circle.
    ::查找每个圆的中间和半径。然后,绘制每个圆的图。

    1. ( x + 5 ) 2 + ( y 3 ) 2 = 16
      :sadx+5)2+(y-3)2=16
    2. x 2 + ( y + 8 ) 2 = 4
      ::x2+(y+8)2=4
    3. ( x 7 ) 2 + ( y 10 ) 2 = 20
      :sad-7)2+(y-10)2=20
    4. ( x + 2 ) 2 + y 2 = 8
      :sadx+2)2+y2=8

    Find the equation of the circles below.
    ::找到下面圆圈的方程

    1. Is (-7, 3) on ( x + 1 ) 2 + ( y 6 ) 2 = 45 ?
      :sad7,3)在(x+1)2+(y-6)2=45上吗?
    2. Is (9, -1) on ( x 2 ) 2 + ( y 2 ) 2 = 60 ?
      :sad9,-1)在(x-2)2+(y-2)2=60上吗?
    3. Is (-4, -3) on ( x + 3 ) 2 + ( y 3 ) 2 = 37 ?
      :sad4)-3在(x+3)2+(y-3)2=37上吗?
    4. Is (5, -3) on ( x + 1 ) 2 + ( y 6 ) 2 = 45 ?
      :sad5,3)在(x+1)2+(y-6)2=45上吗?

    Find the equation of the circle with the given center and point on the circle.
    ::查找圆的方程式,在圆上找到给定的中心点。

    1. center: (2, 3), point: (-4, -1)
      ::中心sad2,3),点sad4,4,1)
    2. center: (10, 0), point: (5, 2)
      ::中枢: (10,0) 点: (5,2)
    3. center: (-3, 8), point: (7, -2)
      ::中心sad3,8),点sad7,2)
    4. center: (6, -6), point: (-9, 4)
      ::中中sad6,6,-6),点sad9,4)

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。