Section outline

  • Area and Perimeter of Triangles
    ::三角区和周边

    The formula for the area of a triangle is half the area of a .
    ::三角形区域的公式为 . 的面积的一半。

    Area of a Triangle: A = 1 2   b h   or   A = b h 2 .
    ::三角形区域:A=12 bh或A=bh2。

    What if you were given a triangle and the size of its base and height ? How could you find the total distance around the triangle and the amount of space it takes up?
    ::如果给您一个三角形, 以及三角形底部和高度的大小呢? 您如何找到三角形周围的总距离及其占用的空间大小 ?

    Examples
    ::实例

    For Examples 1 and 2, use the following triangle.
    ::例1和例2使用以下三角形。

    Example 1
    ::例1

    Find the height of the triangle.
    ::查找三角形的高度 。

    Use the Pythagorean Theorem to find the height.
    ::利用毕达哥里安理论来找到高度。

    8 2 + h 2 = 17 2 h 2 = 225 h = 15   i n


    ::82+h2=172h2=225h=15英寸

    Example 2
    ::例2

    Find the perimeter .
    ::找找周边

    We need to find the hypotenuse . Use the Pythagorean Theorem again.
    ::我们需要找到下丘,再使用毕达哥伦定理

    ( 8 + 24 ) 2 + 15 2 = h 2 h 2 = 1249 h 35.3   i n


    :sad8+242)2+152=h2h2=1249h_35.3英寸

    The perimeter is 24 + 35.3 + 17 76.3   i n .
    ::周边为24+35.3+17+76.3英寸。

    Example 3
    ::例3

    Find the area of the triangle.
    ::找到三角形的区域 。

    To find the area, we need to find the height of the triangle. We are given two sides of the small right triangle , where the hypotenuse is also the short side of the obtuse triangle .
    ::要找到这个区域, 我们需要找到三角形的高度。 我们得到的是右三角形两边, 右三角形的下角也是斜三角形的短边 。

    3 2 + h 2 = 5 2 9 + h 2 = 25 h 2 = 16 h = 4 A = 1 2 ( 4 ) ( 7 ) = 14   u n i t s 2


    ::32+h2=529+h2=25h2=25h2=16h=4A=4A=12(4)(7)=14单位2

    Example 4
    ::例4

    Find the perimeter of the triangle in Example 3.
    ::在例3中查找三角形的周边。

    To find the perimeter, we need to find the longest side of the obtuse triangle. If we used the black lines in the picture, we would see that the longest side is also the hypotenuse of the right triangle with legs 4 and 10.
    ::要找到周界, 我们需要找到隐形三角形中最长的一面。 如果我们使用图片中的黑线, 我们就会看到, 最长的一面也是右三角形与腿4 和 10 的下方。

    4 2 + 10 2 = c 2 16 + 100 = c 2 c = 116 10.77


    ::42+102=c216+100=c2c}116=10.77

    The perimeter is 7 + 5 + 10. 77 22.77   u n i t s
    ::周边是7+5+10.77+22.77单元

    Example 5
    ::例5

    Find the area of a triangle with base of length 28 cm and height of 15 cm.
    ::查找三角形区域,三角形的长度为28厘米,高度为15厘米。

    The area is 1 2 ( 28 ) ( 15 ) = 210   c m 2 .
    ::区域是12(28)(15)=210厘米2。

    Review
    ::回顾

    Use the triangle to answer the following questions. Note that the altitude of the triangle is  8 2 c m .
    ::使用三角形回答下列问题。 请注意, 三角形的高度是 8 2厘米 。

    1. Find the perimeter.
      ::找找周边
    2. Find the area.
      ::找到那个区域

    Find the area of the following shape.
    ::查找以下形状的区域 。

    1. What is the height of a triangle with area 144   m 2 and a base of 24 m?
      ::面积144平方米和基数24米的三角形高度是多少?

    In questions 6-11 we are going to derive a formula for the area of an equilateral triangle.
    ::在问题6-11中,我们将为一个等边三角形的区域得出一个公式。

    1. What kind of triangle is A B D ? Find A D and B D .
      ::哪种三角形是QABD? 找到AD和BD
    2. Find the area of A B C .
      ::寻找 ABC 的区域 。
    3. If the side lengths are x instead of 8 units long, what is the length of  A D and B D ?
      ::如果侧边长度是x而不是8个单位长,那么AD和BD的长度是多少?
    4. If the side lengths are  x instead of 8 units long, what is the area of  A B C .
      ::如果侧边长度是x而不是8个单位长,那么QABC的面积是多少。
    5. Using your formula from #9, find the area of an equilateral triangle with 12 inch sides.
      ::使用您从 # 9 得出的公式, 找到具有 12 英寸 边边的等边三角形区域 。
    6. Using your formula from #9, find the area of an equilateral triangle with 5 inch sides.
      ::使用来自# 9的公式, 找到一个边有 5 英寸的等边三角形区域 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。