Section outline

  • Area and Perimeter of Rhombuses and Kites
    ::伦布斯和克特的面积和周边

    Recall that a rhombus is a quadrilateral with four congruent sides and a is a quadrilateral with distinct adjacent congruent sides. Both of these quadrilaterals have perpendicular diagonals , which is how we are going to find their areas.
    ::回顾暴风雨是四面形的四边形,四面形是四面形的四边形,另一面形的四边形与相邻的四边形不同。 这两个四边形都有直角形的三角形,这就是我们如何找到它们的区域。

    Notice that the diagonals divide each quadrilateral into 4 triangles. If we move the two triangles on the bottom of each quadrilateral so that they match up with the triangles above the horizontal diagonal , we would have two .
    ::注意对角线将每个四边形分隔为 4 个三角形。 如果我们将每个四边形底部的两个三角形移动, 以便它们与水平对角上方的三角形匹配, 我们就会有两个三角形 。

    So, the height of these rectangles is half of one of the diagonals and the base is the length of the other diagonal.
    ::因此,这些矩形的高度是对角体的半数, 基数是另一对角体的长度。

    The area of a rhombus or a kite is A = 1 2 d 1 d 2
    ::暴风车或风筝区域为A=12d1d2

    What if you were given a kite or a rhombus and the size of its two diagonals? How could you find the total distance around the kite or rhombus and the amount of space it takes up? 
    ::如果给了你风筝或红灯,它的两个对角的大小又有多大呢?你怎么能找到风筝或红灯周围的距离,以及它所占用的空间的大小?

    Examples
    ::实例

    Example 1
    ::例1

    Find the perimeter and area of the kite below.
    ::找出风筝下面的周界和地区

    In a kite, there are two pairs of . Use the Pythagorean Theorem to find the lengths of sides or diagonals.
    ::在风筝里,有两对,用毕达哥伦神话 来寻找侧面或对角的长度。

    Smaller diagonal portion Larger diagonal portion 20 2 + d 2 s = 25 2 20 2 + d 2 l = 35 2 d 2 s = 225     d 2 l = 825 d s = 15   u n i t s d l = 5 33   u n i t s


    ::弧二角部分 202+d2s=252202+d2l=352d2s=225 d2l=825ds=15 单位dl=533 单位

    A = 1 2 ( 15 + 5 33 ) ( 40 ) 874.5   u n i t s 2 P = 2 ( 25 ) + 2 ( 35 ) = 120   u n i t s


    ::A=12(15+533)(40)874.5单位2P=2(25)+2(35)=120单位

    Example 2
    ::例2

    Find the area of a rhombus with diagonals of 6 in and 8 in.
    ::找到一个有6英寸和8英寸对角的暴风车区域。

    The area is 1 2 ( 8 ) ( 6 ) = 24   i n 2 .
    ::区域为12(8)(6)=24英寸2。

    Example 3
    ::例3

    Find the perimeter and area of the rhombus below.
    ::在下面找到暴风车的周界和地区

    In a rhombus, all four triangles created by the diagonals are congruent.
    ::在暴风雨中,对角形创造的所有四个三角形都是相似的。

    To find the perimeter, you must find the length of each side, which would be the hypotenuse of one of the four triangles. Use the Pythagorean Theorem.
    ::要找到周边, 您必须找到每边的长度, 也就是四个三角形中一个三角形的下限。 请使用 Pytagorian Theorem 。

    12 2 + 8 2 = s i d e 2 A = 1 2 16 24 144 + 64 = s i d e 2 A = 192   u n i t s 2 s i d e = 208 = 4 13 P = 4 ( 4 13 ) = 16 13   u n i t s


    ::122+82=Side2A=121624144+64=Side2A=192 单位2side @208=413P=4(413)=1613

    Example 4
    ::例4

    Find the perimeter and area of the rhombus below.
    ::在下面找到暴风车的周界和地区

    In a rhombus, all four triangles created by the diagonals are congruent.
    ::在暴风雨中,对角形创造的所有四个三角形都是相似的。

    Here, each triangle is a 30-60-90 triangle with a hypotenuse of 14. From the special right triangle ratios the short leg is 7 and the long leg is 7 3 .
    ::这里每个三角形是30-60-90三角形,下限为14。 从特殊的右三角形比率看,短腿为7,长腿为7。

    P = 4 14 = 56   u n i t s A = 1 2 14 14 3 = 98 3   u n i t s 2


    ::P=414=56个单位A=1214143=983 2个单位

    Example 5
    ::例5

    The vertices of a quadrilateral are A ( 2 , 8 ) , B ( 7 , 9 ) , C ( 11 , 2 ) , and D ( 3 , 3 ) . Show A B C D is a kite and find its area.
    ::四边形的顶点是A(2,8,B(7,9,9),C(11,2)和D(3,3),显示ABCD是风筝,发现其区域。

    After plotting the points, it looks like a kite. A B = A D and B C = D C . The diagonals are perpendicular if the slopes are negative reciprocals of each other.
    ::在绘制点数后, 它看起来像一个风筝 。 AB= AD 和 BC=DC 。 如果斜坡是相互负对等的, 则对角是垂直的 。

    m A C = 2 8 11 2 = 6 9 = 2 3 m B D = 9 3 7 3 = 6 4 = 3 2


    ::mAC=2-811-26923mBD=9-37-3=64=32

    The diagonals are perpendicular, so A B C D is a kite. To find the area, we need to find the length of the diagonals, AC and BD.
    ::对角线是垂直的, 所以ABCD是风筝。 要找到这个区域, 我们需要找到对角线、 AC 和 BD 的长度 。

    d 1 = ( 2 11 ) 2 + ( 8 2 ) 2 d 2 = ( 7 3 ) 2 + ( 9 3 ) 2 = ( 9 ) 2 + 6 2 = 4 2 + 6 2 = 81 + 36 = 117 = 3 13 = 16 + 36 = 52 = 2 13


    ::d1(2-11)2+(8-2)2d2(7-3)2+(9-3)2(9-2)2+(9)2+6242+6281+36117=313+16+36}52=213

    Plug these lengths into the area formula for a kite. A = 1 2 ( 3 13 ) ( 2 13 ) = 39   u n i t s 2
    ::A=12(313)(213)=39个单位2

    Review
    ::回顾

    1. Do you think all rhombi and kites with the same diagonal lengths have the same area? Explain your answer.
      ::你认为所有Rhombi和风筝的对角长度相同吗?请解释一下答案。

    Find the area of the following shapes. Round your answers to the nearest hundredth.
    ::查找以下形状的区域。 将您的答案绕到最近的一百位 。

    Find the area and perimeter of the following shapes. Round your answers to the nearest hundredth.
    ::查找以下形状的面积和周界。 将您的答案绕到最近的一百个形状 。

    For Questions 12 and 13, the area of a rhombus is 32   u n i t s 2 .
    ::关于问题12和13,暴客的面积为32个单位2。

    1. What would the product of the diagonals have to be for the area to be 32   u n i t s 2 ?
      ::对角线的产物是什么才能使这个区域达到32个单位2?
    2. List two possibilities for the length of the diagonals, based on your answer from #12.
      ::根据您在 #12 中的答复, 列出对角线长度的两种可能性 。

    For Questions 14 and 15, the area of a kite is 54   u n i t s 2 .
    ::对于问题14和15,风筝面积为54个单位2。

    1. What would the product of the diagonals have to be for the area to be 54   u n i t s 2 ?
      ::对角线的产物是什么才能使面积为54个单位2 ?
    2. List two possibilities for the length of the diagonals, based on your answer from #14.
      ::根据您在 #14 中的答复, 列出对角线长度的两种可能性 。

    Sherry designed the logo for a new company, made up of 3 congruent kites.
    ::雪莉为一家新公司设计了标志,由3个相同的风筝组成。

    1. What are the lengths of the diagonals for one kite? (Hint: use the long diagonal to find the length of shorter diagonal.)
      ::一个风筝的对角线长度是多少? (提示: 使用长对角线查找短对角线的长度 。 )
    2. Find the area of one kite.
      ::找到一只风筝的区域
    3. Find the area of the entire logo. 

      lesson content


      ::找到整个徽标的区域 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。