章节大纲

  • After all of your experience with trig functions, you are feeling pretty good. You know the values of trig functions for a lot of common angles, such as 30 , 60 etc. And for other angles, you regularly use your calculator. Suppose someone gave you an equation like this:
    ::在你对三角函数的所有经验之后,你感觉很好。你知道许多常见角度的三角函数值,例如 30,60。对于其他角度,你经常使用计算器。假设有人给了你这样的方程式:

    cos 75
    ::COS75

    Could you solve it without the calculator? You might notice that this is half of 150 . This might give you a hint!
    ::没有计算器你能解决它吗?你可能会注意到这是150美元的一半。这可能会给你一个提示!

    Half Angle Formulas
    ::半角公式

    Here we'll attempt to derive and use formulas for trig functions of angles that are half of some particular value. 
    ::在这里,我们将尝试 产生并使用公式 用于三角函数的三角函数 角度是某些特定值的一半。

    To do this, we'll start with the double angle formula for cosine: cos 2 θ = 1 2 sin 2 θ . Set θ = α 2 , so the equation above becomes cos 2 α 2 = 1 2 sin 2 α 2 .
    ::要做到这一点, 我们首先使用共弦的双角公式 : cos @ 2 @ 1_ 2sin2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\2\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Solving this for sin α 2 , we get:
    ::解决这一罪2,我们得到:

    cos 2 α 2 = 1 2 sin 2 α 2 cos α = 1 2 sin 2 α 2 2 sin 2 α 2 = 1 cos α sin 2 α 2 = 1 cos α 2 sin α 2 = ± 1 cos α 2

    ::2α2=1 -2辛2222222222211122222112222222112222222222222222222222222222222222222222222222222222222222222222222222

    sin α 2 = 1 cos α 2 if α 2 is located in either the first or second quadrant.
    ::如果α2位于第一个或第二个象限内,则该等离子2位于第一个或第二个象限内,则该等离子2=1-cos%2。

    sin α 2 = 1 cos α 2 if α 2 is located in the third or fourth quadrant.
    ::如果α2位于第三或第四象限内,则该α2位于第三或第四象限内。

    This formula shows how to find the sine of half of some particular angle.
    ::此公式显示如何找到某个角度的正弦值 。

    One of the other formulas that was derived for the cosine of a double angle is:
    ::用于双角余弦的其他公式之一是:

    cos 2 θ = 2 cos 2 θ 1 . Set θ = α 2 , so the equation becomes cos 2 α 2 = 1 + 2 cos 2 α 2 . Solving this for cos α 2 , we get:
    ::cos2222122222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

    cos 2 α 2 = 2 cos 2 α 2 1 cos α = 2 cos 2 α 2 1 2 cos 2 α 2 = 1 + cos α cos 2 α 2 = 1 + cos α 2 cos α 2 = ± 1 + cos α 2

    ::2α2=2cos222-1cos2222-12cos222=1+cosços222=1+cos22cos221+cos21+cos221+cos2}2=1+cos_2cos221+cos2}2=2=1+cos%2_1+cos2}2=2=1+cos_2cos221+cos%1+cos2}2=1+cos2=2

    cos α 2 = 1 + cos α 2 if α 2 is located in either the first or fourth quadrant.
    ::如果α2位于第一个或第四个象限内,则其位置为cos%2=1+cos%2。

    cos α 2 = 1 + cos α 2 if α 2 is located in either the second or fourth quadrant.
    ::如果α2位于第二个或第四个象限内,则该α2位于第二个或第四个象限内。

    This formula shows how to find the cosine of half of some particular angle.
    ::此公式显示如何找到某个角度的一半的余弦 。

    Let's see some examples of these two formulas ( of half angles) in action.
    ::让我们来看看这两个公式(半角度)在行动的一些例子。

    1. Determine the exact value of sin 15 .
    ::1. 确定罪的确切价值15。

    Using the half angle identity , α = 30 , and 15 is located in the first quadrant. Therefore, sin α 2 = 1 cos α 2 .
    ::使用半角身份, 30 和 15 位于第一个象限。 因此, sin2=1- cos2 。

    sin 15 = 1 cos 30 2 = 1 3 2 2 = 2 3 2 2 = 2 3 4

    ::=1-322=2-322=2-342=2-34

    Plugging this into a calculator, 2 3 4 0.2588 . Using the sine function on your calculator will validate that this answer is correct.
    ::将它插入计算器 2--340. 2588。 在计算器上使用正弦函数将验证这个答案是正确的 。

    2. Use the half angle identity to find exact value of sin 112.5
    ::2. 使用半角身份查找罪的准确值*112.5*__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    Since sin 225 2 = sin 112.5 , use the half angle formula for sine, where α = 225 . In this example, the angle 112.5 is a second quadrant angle, and the of a second quadrant angle is positive.
    ::由于 sin2252=sin112.55, 请使用正弦的半角公式, 也就是正弦 225。 在此示例中, 112.5是第二个象限角度, 而第二个象限角度是正的 。

    sin 112.5 = sin 225 2 = ± 1 cos 225 2 = + 1 ( 2 2 ) 2 = 2 2 + 2 2 2 = 2 + 2 4

    ::=122.5=22+22=2+24 =22+22=2+24 =2=2=2=2=2=2=2=2=2=2=2=2=2=2=2=2

    3. Use the half angle formula for the cosine function to prove that the following expression is an identity : 2 cos 2 x 2 cos x = 1
    ::3. 使用余弦函数的半角公式来证明以下表达式是一个身份: 2cos2\\\\\ x2\\\\ cosx=1

    Use the formula cos α 2 = 1 + cos α 2 and substitute it on the left-hand side of the expression.
    ::使用公式COs2=1+cos2,在表达式的左侧替换。

    2 ( 1 + cos θ 2 ) 2 cos θ = 1 2 ( 1 + cos θ 2 ) cos θ = 1 1 + cos θ cos θ = 1 1 = 1

    ::2(1+cos2)、2-cos12(1+cos2)、-cos11+coscos11=1

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were  asked you to find cos 75 . If you use the half angle formula, then α = 150
    ::早些时候, 您被要求找到 cos 75 {} 。 如果您使用半角公式, 那么 150 {} 。 @ 150 }

    Substituting this into the half angle formula:
    ::将其替换为半角公式 :

    sin 150 2 = 1 cos α 2 = 1 cos 150 2 = 1 + 3 2 2 = 2 + 3 4 = 2 + 3 2
    ::=1+322=2+34=2+32

    Example 2
    ::例2

    Prove the identity: tan b 2 = sec b sec b csc b + csc b
    ::验证身份: tan_b2=sec_bsec_bcsc_b+csc%b

    Step 1: Change right side into sine and cosine.
    ::第1步:将右侧变为正弦和正弦。

    tan b 2 = sec b sec b csc b + csc b = 1 cos b ÷ csc b ( sec b + 1 ) = 1 cos b ÷ 1 sin b ( 1 cos b + 1 ) = 1 cos b ÷ 1 sin b ( 1 + cos b cos b ) = 1 cos b ÷ 1 + cos b sin b cos b = 1 cos b sin b cos b 1 + cos b = sin b 1 + cos b

    ::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    Step 2: At the last step above, we have simplified the right side as much as possible, now we simplify the left side, using the half angle formula.
    ::第2步:在以上最后一步,我们尽可能简化了右侧,现在我们使用半角公式简化了左侧。

    1 cos b 1 + cos b = sin b 1 + cos b 1 cos b 1 + cos b = sin 2 b ( 1 + cos b ) 2 ( 1 cos b ) ( 1 + cos b ) 2 = sin 2 b ( 1 + cos b ) ( 1 cos b ) ( 1 + cos b ) = sin 2 b 1 cos 2 b = sin 2 b

    ::1-cos_b1+cos_b1+sin_b1+cos_b1+cos_b1+cos_b=sin2_b2(1+cos_b)(1+cos_b)2=sin2_b(1+cos_b)(1+cos_b)(1+cos_b)1+cos_b)=sin2_b1-b1_cos2_b=sin2_b

    Example 3
    ::例3

    Verify the identity: cot c 2 = sin c 1 cos c
    ::验证身份: c2=sinc1-cosc

    Step 1: change cotangent to cosine over sine, then cross-multiply.
    ::第1步:将余切改为正弦余弦,然后交叉倍增。

    cot c 2 = sin c 1 cos c = cos c 2 sin c 2 = 1 + cos c 1 cos c 1 + cos c 1 cos c = sin c 1 cos c 1 + cos c 1 cos c = sin 2 c ( 1 cos c ) 2 ( 1 + cos c ) ( 1 cos c ) 2 = sin 2 c ( 1 cos c ) ( 1 + cos c ) ( 1 cos c ) = sin 2 c 1 cos 2 c = sin 2 c

    ::c2=sin2c(1-cos)2=sin2c(1-cos)2=sin2c(1-1-cos)1+c1+c1+cosóc1 -cosác1-c1+cosóc1+cosóc1 -cosóc=sin2c(1-cosác)1+c(1-cosác)2=sin2c(1-cos%c)1+csóc(1-cos@c)1+c(1-cosóc)=sin2-c1-cos2_c=sin2c

    Example 4
    ::例4

    Prove that sin x tan x 2 + 2 cos x = 2 cos 2 x 2
    ::证明 sinxtanx2+2cosx=2cos2x2x2

    sin x tan x 2 + 2 cos x = sin x ( 1 cos x sin x ) + 2 cos x sin x tan x 2 + 2 cos x = 1 cos x + 2 cos x sin x tan x 2 + 2 cos x = 1 + cos x sin x tan x 2 + 2 cos x = 2 cos 2 x 2

    ::\\\\\\\\\\\\\\\\\\\\\\\\\\\ x\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Review
    ::回顾

    Use half angle identities to find the exact values of each expression.
    ::使用半角度身份查找每个表达式的准确值 。

    1. sin 22.5
      ::-22.5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
    2. sin 75
      ::75
    3. sin 67.5
      ::问题:67.5*_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    4. sin 157.5
      ::第157.5 条
    5. cos 22.5
      ::22.5_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    6. cos 75
      ::COS75
    7. cos 157.5
      :伤心cos157.5) (cos157.5)
    8. cos 67.5
      :伤心cos67.5) (cos67.5)
    9. Use the two half angle identities presented in this section to prove that tan ( x 2 ) = ± 1 cos x 1 + cos x .
      ::使用本节显示的两个半角度身份来证明 tan(x2)1-cosx1+cosx。
    10. Use the result of the previous problem to show that tan ( x 2 ) = 1 cos x sin x .
      ::使用上一个问题的结果来显示 tan( x2) = 1 - cosxsinxxx。
    11. Use the result of the previous problem to show that tan ( x 2 ) = sin x 1 + cos x .
      ::使用上一个问题的结果来显示 tan( x2) = sinx1+cosx 。

    Use half angle identities to help you find all solutions to the following equations in the interval [ 0 , 2 π ) .
    ::使用半角度身份来帮助您在间隔 [0,2] 中找到以下方程式的所有解决方案 。

    1. sin 2 x = cos 2 ( x 2 )
      ::sin2\\\ xx=cos2\\\\\\\\( x2)
    2. tan ( x 2 ) = 1 cos x 1 + cos x
      ::tan( x2) =1 - cosx1+cosx
    3. cos 2 x = sin 2 ( x 2 )
      ::CO2 x=sin2 (x2)
    4. sin 2 ( x 2 ) = 2 cos 2 x 1
      :伤心x2) = 2cos2\\ x- 1

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。