3. 11 半角公式
章节大纲
-
After all of your experience with trig functions, you are feeling pretty good. You know the values of trig functions for a lot of common angles, such as etc. And for other angles, you regularly use your calculator. Suppose someone gave you an equation like this:
::在你对三角函数的所有经验之后,你感觉很好。你知道许多常见角度的三角函数值,例如 30,60。对于其他角度,你经常使用计算器。假设有人给了你这样的方程式:
::COS75Could you solve it without the calculator? You might notice that this is half of . This might give you a hint!
::没有计算器你能解决它吗?你可能会注意到这是150美元的一半。这可能会给你一个提示!Half Angle Formulas
::半角公式Here we'll attempt to derive and use formulas for trig functions of angles that are half of some particular value.
::在这里,我们将尝试 产生并使用公式 用于三角函数的三角函数 角度是某些特定值的一半。To do this, we'll start with the double angle formula for cosine: . Set , so the equation above becomes .
::要做到这一点, 我们首先使用共弦的双角公式 : cos @ 2 @ 1_ 2sin2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\2\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Solving this for , we get:
::解决这一罪2,我们得到:
::2α2=1 -2辛2222222222211122222112222222112222222222222222222222222222222222222222222222222222222222222222222222if is located in either the first or second quadrant.
::如果α2位于第一个或第二个象限内,则该等离子2位于第一个或第二个象限内,则该等离子2=1-cos%2。if is located in the third or fourth quadrant.
::如果α2位于第三或第四象限内,则该α2位于第三或第四象限内。This formula shows how to find the sine of half of some particular angle.
::此公式显示如何找到某个角度的正弦值 。One of the other formulas that was derived for the cosine of a double angle is:
::用于双角余弦的其他公式之一是:. Set , so the equation becomes . Solving this for , we get:
::cos2222122222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
::2α2=2cos222-1cos2222-12cos222=1+cosços222=1+cos22cos221+cos21+cos221+cos2}2=1+cos_2cos221+cos2}2=2=1+cos%2_1+cos2}2=2=1+cos_2cos221+cos%1+cos2}2=1+cos2=2if is located in either the first or fourth quadrant.
::如果α2位于第一个或第四个象限内,则其位置为cos%2=1+cos%2。if is located in either the second or fourth quadrant.
::如果α2位于第二个或第四个象限内,则该α2位于第二个或第四个象限内。This formula shows how to find the cosine of half of some particular angle.
::此公式显示如何找到某个角度的一半的余弦 。Let's see some examples of these two formulas ( of half angles) in action.
::让我们来看看这两个公式(半角度)在行动的一些例子。1. Determine the exact value of .
::1. 确定罪的确切价值15。Using the half angle identity , , and is located in the first quadrant. Therefore, .
::使用半角身份, 30 和 15 位于第一个象限。 因此, sin2=1- cos2 。
::=1-322=2-322=2-342=2-34Plugging this into a calculator, . Using the sine function on your calculator will validate that this answer is correct.
::将它插入计算器 2--340. 2588。 在计算器上使用正弦函数将验证这个答案是正确的 。2. Use the half angle identity to find exact value of
::2. 使用半角身份查找罪的准确值*112.5*__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Since , use the half angle formula for sine, where . In this example, the angle is a second quadrant angle, and the of a second quadrant angle is positive.
::由于 sin2252=sin112.55, 请使用正弦的半角公式, 也就是正弦 225。 在此示例中, 112.5是第二个象限角度, 而第二个象限角度是正的 。
::=122.5=22+22=2+24 =22+22=2+24 =2=2=2=2=2=2=2=2=2=2=2=2=2=2=2=23. Use the half angle formula for the cosine function to prove that the following expression is an identity :
::3. 使用余弦函数的半角公式来证明以下表达式是一个身份: 2cos2\\\\\ x2\\\\ cosx=1Use the formula and substitute it on the left-hand side of the expression.
::使用公式COs2=1+cos2,在表达式的左侧替换。
::2(1+cos2)、2-cos12(1+cos2)、-cos11+coscos11=1Examples
::实例Example 1
::例1Earlier, you were asked you to find . If you use the half angle formula, then
::早些时候, 您被要求找到 cos 75 {} 。 如果您使用半角公式, 那么 150 {} 。 @ 150 }Substituting this into the half angle formula:
::将其替换为半角公式 :
::=1+322=2+34=2+32Example 2
::例2Prove the identity:
::验证身份: tan_b2=sec_bsec_bcsc_b+csc%bStep 1: Change right side into sine and cosine.
::第1步:将右侧变为正弦和正弦。
::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Step 2: At the last step above, we have simplified the right side as much as possible, now we simplify the left side, using the half angle formula.
::第2步:在以上最后一步,我们尽可能简化了右侧,现在我们使用半角公式简化了左侧。
::1-cos_b1+cos_b1+sin_b1+cos_b1+cos_b1+cos_b=sin2_b2(1+cos_b)(1+cos_b)2=sin2_b(1+cos_b)(1+cos_b)(1+cos_b)1+cos_b)=sin2_b1-b1_cos2_b=sin2_bExample 3
::例3Verify the identity:
::验证身份: c2=sinc1-coscStep 1: change cotangent to cosine over sine, then cross-multiply.
::第1步:将余切改为正弦余弦,然后交叉倍增。
::c2=sin2c(1-cos)2=sin2c(1-cos)2=sin2c(1-1-cos)1+c1+c1+cosóc1 -cosác1-c1+cosóc1+cosóc1 -cosóc=sin2c(1-cosác)1+c(1-cosác)2=sin2c(1-cos%c)1+csóc(1-cos@c)1+c(1-cosóc)=sin2-c1-cos2_c=sin2cExample 4
::例4Prove that
::证明 sinxtanx2+2cosx=2cos2x2x2
::\\\\\\\\\\\\\\\\\\\\\\\\\\\ x\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Review
::回顾Use half angle identities to find the exact values of each expression.
::使用半角度身份查找每个表达式的准确值 。-
::-22.5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ -
::75 -
::问题:67.5*_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ -
::第157.5 条 -
::22.5_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ -
::COS75 -
:cos157.5) (cos157.5)
-
:cos67.5) (cos67.5)
-
Use the two half angle identities presented in this section to prove that
.
::使用本节显示的两个半角度身份来证明 tan(x2)1-cosx1+cosx。 -
Use the result of the previous problem to show that
.
::使用上一个问题的结果来显示 tan( x2) = 1 - cosxsinxxx。 -
Use the result of the previous problem to show that
.
::使用上一个问题的结果来显示 tan( x2) = sinx1+cosx 。
Use half angle identities to help you find all solutions to the following equations in the interval .
::使用半角度身份来帮助您在间隔 [0,2] 中找到以下方程式的所有解决方案 。-
::sin2\\\ xx=cos2\\\\\\\\( x2) -
::tan( x2) =1 - cosx1+cosx -
::CO2 x=sin2 (x2) -
:x2) = 2cos2\\ x- 1
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -