Section outline

  • Rotation Symmetry
    ::旋转对称

    Rotational symmetry is present when a figure can be rotated (less than 360 ) such that it looks like it did before the rotation . The center of rotation is the point a figure is rotated around such that the rotational symmetry holds.
    ::当一个数字可以旋转( 小于 360 ) 时, 就会出现旋转对称, 这样它看起来就像在旋转之前一样。 旋转的中心是某个数字在旋转对称时旋转的点, 这样可以保持旋转对称 。

    For the H , we can rotate it twice, the triangle can be rotated 3 times and still look the same and the hexagon can be rotated 6 times.
    ::对于H,我们可以旋转它两次,三角形可以旋转3次,看起来仍然一样,六边形可以旋转6次。

    What if you had a six-pointed star and you rotated that star less than 360 ? If the rotated star looked exactly the same as the original star, what would that say about the star?
    ::如果你有一个六点的恒星,而你旋转的恒星小于360?如果旋转的恒星与原恒星看起来完全一样,那会如何?

    Examples
    ::实例

    Example 1
    ::例1

    Determine if the figure below has rotational symmetry. Find the angle and how many times it can be rotated.
    ::确定下图是否具有旋转对称。 查找角度, 以及可以旋转多少次 。

    The pentagon can be rotated 5 times. Because there are 5 lines of rotational symmetry, the angle would be 360 5 = 72 .
    ::五边形可以旋转5次。 因为有5条旋转对称线, 角度将是3605=72。

    Example 2
    ::例2

    Determine if the figure below has rotational symmetry. Find the angle and how many times it can be rotated.
    ::确定下图是否具有旋转对称。 查找角度, 以及可以旋转多少次 。

    The N can be rotated twice. This means the angle of rotation is 180 .
    ::N可旋转两次。 这意味着旋转的角度是180。

    Example 3
    ::例3

    Determine if the figure below has rotational symmetry. Find the angle and how many times it can be rotated.
    ::确定下图是否具有旋转对称。 查找角度, 以及可以旋转多少次 。

    The checkerboard can be rotated 4 times. There are 4 lines of rotational symmetry, so the angle of rotation is 360 4 = 90 .
    ::棋盘可以旋转 4 次 。 有 4 条旋转对称线, 因此旋转的角度是 360 4 = 90 。

    Example 4
    ::例4

    Find the angle of rotation and the number of times each figure can rotate.
    ::查找旋转角度和每个数字可以旋转的次数。

    The can be rotated twice. The angle of rotation is 180 .
    ::旋转角度是180。

    Example 5
    ::例5

    The hexagon can be rotated six times. The angle of rotation is 60 .
    ::六边形可以旋转六倍。旋转的角度是 60。

    Review
    ::回顾

    1. If a figure has 3 lines of rotational symmetry, it can be rotated _______ times.
      ::如果一个数字有3条旋转对称线,可以旋转%倍。
    2. If a figure can be rotated 6 times, it has _______ lines of rotational symmetry.
      ::如果一个数字可以旋转6次,它具有旋转对称线。
    3. If a figure can be rotated n times, it has _______ lines of rotational symmetry.
      ::如果一个数字可以旋转 n 次, 则具有旋转对称的线条 。
    4. To find the angle of rotation, divide 360 by the total number of _____________.
      ::要找到旋转角度, 将360++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    5. Every square has an angle of rotation of _________.
      ::每个广场的旋转角度都是 。

    Determine whether each statement is true or false.
    ::确定每一声明是真实的还是虚假的。

    1. Every parallelogram has rotational symmetry.
      ::每个平行图都有旋转对称。
    2. Every figure that has line symmetry also has rotational symmetry.
      ::每个有线对称的数字也都有旋转对称。

    Determine whether the words below have rotation symmetry.
    ::确定以下单词是否具有旋转对称性。

    1. OHIO
      ::俄、俄、俄、俄、俄、俄、俄
    2. MOW
      ::呜
    3. WOW
      ::哇哇
    4. KICK
      ::鸡鸡
    5. pod
      ::缓冲

    Find the angle of rotation and the number of times each figure can rotate.
    ::查找旋转角度和每个数字可以旋转的次数。

    Determine if the figures below have rotation symmetry. Identify the angle of rotation.
    ::确定下图是否具有旋转对称。 指定旋转角度 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。