章节大纲

  • Reflections
    ::反思

    A transformation is an operation that moves, flips, or otherwise changes a figure to create a new figure. A rigid transformation (also known as an isometry or congruence transformation ) is a transformation that does not change the size or shape of a figure.
    ::变换是一种移动、翻转或以其他方式改变数字以创建新图的操作。 僵硬变换( 也称为等离线或相容变换) 是一种不会改变图的大小或形状的变换 。

    The rigid transformations are translations, reflections , and rotations . The new figure created by a transformation is called the image . The original figure is called the preimage . If the preimage is A , then the image would be A , said “a prime.” If there is an image of A , that would be labeled A , said “a double prime.”
    ::硬质变换是翻译、反射和旋转。 由变换创造的新数字被称为图像。 原始数字被称为预映。 如果预映为A,那么图像将是A , “ 黄金 ” 。 如果有A 的图像,则标为A 的A , “双质 ” , 则表示“双质 ” 。

    A reflection is a transformation that turns a figure into its mirror image by flipping it over a line . The line of reflection is the line that a figure is reflected over. If a point is on the line of reflection then the image is the same as the preimage. Images are always congruent to preimages.
    ::反射是一种转换,它通过翻翻一行将其图象转换成镜像。反射线是图象反射的线条。如果一个点在反射线上,则图像与预映像相同。图像总是与预映一致的。

    While you can reflect over any line, some common lines of reflection have rules that are worth memorizing:
    ::虽然你可以反省任何一行, 但一些共同的反省路线有值得记住的规则:

    Reflection over the y axis: ( x , y ) ( x , y )
    ::y- 轴反射 伤心x,y) (- x,y) (- x,y)

    Reflection over the x axis: ( x , y ) ( x , y )
    ::x - 轴反射 伤心x,y) (x,-y)

    Reflection over y = x : ( x , y ) ( y , x )
    ::y=x 反射 y=x伤心x,y) (y,x)

    Reflection over y = x : ( x , y ) ( y , x )
    ::yx的反射伤心x,y)(-y,-x)

    What if you were given the coordinates of a quadrilateral and you were asked to reflect that quadrilateral over the y axis? What would its new coordinates be?
    ::如果你们获得四边形的座标,而你们被要求在Y-轴上反射四边形呢?它的新座标是什么?

    Examples
    ::实例

    Example 1
    ::例1

    Reflect A B C over the y axis. Find the coordinates of the image.
    ::在 y - 轴上反射 ABC。 找到图像的坐标 。

    A B C will be the same distance away from the y axis as A B C , but on the other side. Hence, their x -coordinates will be opposite .
    ::与y-axis的距离与 QABC的距离相同, 但是在另一侧。 因此, 它们的X坐标将相反 。

    A ( 4 , 3 ) A ( 4 , 3 ) B ( 7 , 1 ) B ( 7 , 1 ) C ( 2 , 2 ) C ( 2 , 2 )

    ::A(4,3)A[(4,3)A[(4,4,3)B(7,-1)B[(7)-(1)B[(7)-(7)-(7)-(1)C(2)-(2)-(C)-(2)-(2)-(2))

    Example 2
    ::例2

    Reflect the letter F over the x axis.
    ::在 x - 轴上反射字母 'F' 。

    When reflecting the letter F over the x axis, the y coordinates will be the same distance away from the x axis, but on the other side of the x axis. Hence, their y -coordinates will be opposite.
    ::当反射 x - 轴的字母 F 时, y - 坐标将与 x - 轴的距离相同, 但位于 x - 轴的另外一边。 因此, 它们的 Y 坐标将是相反的 。

    Example 3
    ::例3

    Reflect the triangle A B C with vertices A ( 4 , 5 ) , B ( 7 , 1 ) and C ( 9 , 6 ) over the line x = 5 . Find the coordinates of A , B , and C .
    ::反射横线x=5的A(4)5、B(7)、B(7)和C(9、6)三角形 ABC 。

    The image’s vertices are the same distance away from x = 5 as those of the preimage.
    ::图像的顶部距离 x=5 与预感的顶部距离相同 。

    A ( 4 , 5 ) A ( 6 , 5 ) B ( 7 , 1 ) B ( 3 , 1 ) C ( 9 , 6 ) C ( 1 , 6 )

    ::A(4,5,5)A*A[6,5,5,B(7,1,1)B*(3,3,1)C(9,6)C__C[1,6)

    Example 4
    ::例4

    Reflect the line segment P Q ¯ with endpoints P ( 1 , 5 ) and Q ( 7 , 8 ) over the line y = 5 .
    ::反射线段 PQ ,端点为 P(1,5) 和 Q(7,8) ,端点为 y= 5 。

    P is on the line of reflection, which means P has the same coordinates. Q is the same distance away from y = 5 , but on the other side.
    ::P在反射线上, 这意味着P有相同的坐标。 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\在距离y=5,但在另一侧。

    P ( 1 , 5 ) P ( 1 , 5 ) Q ( 7 , 8 ) Q ( 7 , 2 )

    ::P(1,1,5,5)PP(-1,5)Q(7,8)(7,2)

    Example 5
    ::例5

    A triangle L M N and its reflection, L M N are below. What is the line of reflection?
    ::三角的LMN及其反射在下面。反射线是什么?

    Looking at the graph, we see that the corresponding parts of the preimage and image intersect when y = 1 . Therefore, this is the line of reflection.
    ::查看图时,我们看到预视和图像的相应部分在y=1时相互交叉。 因此,这是反射线。

    If the image does not intersect the preimage, find the midpoint between the preimage point and its image. This point is on the line of reflection.
    ::如果图像不交叉图像预映, 请在预映点与其图像之间找到中点。 此点在反射线上 。

    Example 6
    ::例6

    Reflect the trapezoid T R A P over the line y = x .
    ::反射横线yx的陷阱图。

    The purple line is y = x . You can reflect the trapezoid over this line.
    ::紫色线是yx。你可以反射到这个线上的。

    T ( 2 , 2 ) T ( 2 , 2 ) R ( 4 , 3 ) R ( 3 , 4 ) A ( 5 , 1 ) A ( 1 , 5 ) P ( 1 , 1 ) P ( 1 , 1 )

    ::T(2,2,2)T(-2,2,2)R(4,3)R[3,4)A(5,1)A[A]A[(-1,1,5)P(1,1)P(1,1)-1)

    Review
    ::回顾

    1. If (5, 3) is reflected over the y axis, what is the image?
      ::如果(5,3)在y-轴上反射,图像是什么?
    2. If (5, 3) is reflected over the x axis, what is the image?
      ::如果 X - 轴反射到( 5, 3) , 图像是什么 ?
    3. If (5, 3) is reflected over y = x , what is the image?
      ::如果(5,3)在y=x上方反射,图像是什么?
    4. If (5, 3) is reflected over y = x , what is the image?
      ::如果(5,3)在yx上方反射,图像是什么?
    5. Plot the four images. What shape do they make? Be specific.
      ::绘制四张图像。 它们的形状是什么? 具体化 。
    6. Which letter is a reflection over a vertical line of the letter b ?
      ::哪个字母反射在字母“b”的垂直线上?
    7. Which letter is a reflection over a horizontal line of the letter b ?
      ::哪个字母反射在字母“b”的横向线上?

    Find the coordinates of the image reflected over the given line.
    ::查找在给定线上反射的图像坐标 。

    1. y axis
      ::y - 轴
    2. x axis
      ::x - 轴
    3. y = 3
      ::y=3 y=3
    4. x = 1
      ::x1
    5. x axis
      ::x - 轴
    6. y axis
      ::y - 轴
    7. y = x
      ::y=x y=x
    8. y = x
      ::yx
    9. x = 2
      ::x=2x=2
    10. y = 4
      ::y 4
    11. y = x
      ::yx
    12. y = x
      ::y=x y=x

    Find the line of reflection the blue triangle (preimage) and the red triangle (image).
    ::查找反射线 蓝色三角形(预视)和红色三角形(图像) 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。