12.7 发射
章节大纲
-
Tessellations
::发射A tessellation is a tiling over a plane with one or more figures such that the figures fill the plane with no overlaps and no gaps. You have probably seen tessellations before. Examples of a tessellation are: a tile floor, a brick or block wall, a checker or chess board, and a fabric pattern. The following pictures are also examples of tessellations.
::通融是平面上的一个砖块,有一个或多个数字,使数字填满平面,没有重叠,没有空白。您可能已经见过多次通融,例如:瓷地板、砖墙或砖墙、棋盘或棋盘以及布局。以下图片也是通融的例子。Notice the hexagon (cubes, first tessellation) and the quadrilaterals fit together perfectly. If we keep adding more, they will entirely cover the plane with no gaps or overlaps.
::注意六边形( 立方体, 第一个熔化) 和四边形完美地组合在一起。 如果我们继续添加更多, 它们将完全覆盖平面, 没有空白或重叠 。We are only going to worry about tessellating regular polygons. To tessellate a shape, it must be able to exactly surround a point , or the sum of the angles around each point in a tessellation must be . The only regular polygons with this feature are , squares, and regular hexagons.
::我们只会担心连接正态多边形。 要将形状变形, 它必须能够完全环绕某个点, 或星系中每个点周围角度的总和必须是 360 。 只有具有此特性的正态多边形是, 方形和正态六边形 。What if you were given a hexagon and asked to tile it over a plane such that it would fill the plane with no overlaps and no gaps?
::如果有人给了你一个六边形,要求你用平面把它堆在飞机上,以便填满飞机,没有重叠,没有空隙,那又如何?Examples
::实例Example 1
::例1How many regular hexagons will fit around one point?
::有多少普通的六边形将适合一个点左右?First, recall how many degrees are in a circle , and then figure out how many degrees are in each angle of a regular hexagon. There are in a circle and in each interior angle of a hexagon, so hexagons will fit around one point.
::首先,请记住一个圆圈中有多少度, 然后找出一个普通六边形的每个角度中有多少度。 在一个圆圈里有360°, 在一个六边形的每个内角里有120°, 所以 360120=3六边形将适合一个点左右 。Example 2
::例2Does a regular octagon tessellate?
::普通的八边方星座板吗?First, recall that there are in a pentagon . Each angle in a regular pentagon is . From this, we know that a regular octagon will not tessellate by itself because does not go evenly into .
::首先, 请记住在五角形中存在 1080 。 普通五角形中每个角度是 1080 8=135 。 我们从中知道, 普通八边形不会自动叠叠, 因为 135 不均匀地切入 360 。Example 3
::例3Draw a tessellation of equilateral triangles.
::绘制等边三角形的星系。In an equilateral triangle each angle is . Therefore, six triangles will perfectly fit around each point.
::在等边三角形中,每个角度是60 。 因此, 六个三角形将完全适合每个点 。Extending the pattern, we have:
::在扩展模式时,我们有:Example 4
::例4Does a regular pentagon tessellate?
::普通的五金色套件吗?First, recall that there are in a pentagon. Each angle in a regular pentagon is . From this, we know that a regular pentagon will not tessellate by itself because times 2 or 3 does not equal .
::首先,请记住,在五角形中,有540。在普通五角形中,每个角度是 5405=108。从这一点上,我们知道,普通五角形不会自行变形,因为108乘以2或3不等于360。Example 5
::例5How many squares will fit around one point?
::多少平方块将适合一个点左右?First, recall how many degrees are in a circle, and then figure out how many degrees are in each angle of a square . There are in a circle and in each interior angle of a square, so squares will fit around one point.
::首先, 记得一个圆圈中有多少度, 然后找出一个平方的每个角度中有多少度。 一个圆圈里有 360 °, 一个平方的每个内部角里有 90 °, 所以 36090= 4 的方形将适合一个点左右 。Review
::回顾-
Tessellate a square. Add color to your design.
::泰塞拉特方块 给设计增加颜色 -
What is an example of a tessellated square in real life?
::真实生活中的书信广场是什么样? -
Tessellate a regular hexagon. Add color to your design.
::插入普通六边形,在设计中添加颜色。 -
You can also tessellate two regular polygons together. Try tessellating a regular hexagon and an equilateral triangle. First, determine how many of each fit around a point and then repeat the pattern. Add color to your design.
::您也可以将两个正则多边形一起捆绑在一起。 尝试将一个正则六边形和一个等边三角形串联起来。 首先, 确定每个三角形中有多少个适合一个点, 然后重复这个图案。 将颜色添加到设计中 。 -
Does a regular dodecagon (12-sided shape) tessellate? Why of why not?
::普通的十二进制( 12 面形) etselolate 吗? 为什么不呢 ? -
Does a kite tessellate? Draw an example of how it might be possible.
::是否有风筝板板? 请举一个例子说明它是如何可能的。
Do the following figures tessellate?
::是否使用以下数字 etselplate ?Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
Tessellate a square. Add color to your design.