Section outline

  • The number of survey participants who declined to respond can be represented by the decimal 0.14141414... How would you write this decimal as a fraction ?
    ::拒绝答复的受访者人数可以用小数点0.14141414表示...您如何将小数点写成小数点?

    By being able to write a repeating decimal as fraction, we know it is a rational number .
    ::通过能够将重复的十进制写成分数, 我们知道这是一个合理的数字。

    Real Numbers
    ::实际数字

    There are several types of real numbers. You are probably familiar with fractions, decimals, integers , whole numbers and even square roots. All of these types of numbers are real numbers. There are two main types of numbers: real and complex. We will address real numbers in this concept.
    ::实际数字有几种类型。 您可能熟悉分数、 小数、 整数、 整数甚至正方根。 所有这些类型的数字都是真实数字。 数字有两大类: 真实的和复杂的。 我们将在这个概念中处理实际数字 。

    Real Numbers Any number that can be plotted on a number line. Symbol: R Examples: 8 , 4.67 , 1 3 , π
    Rational Numbers Any number that can be written as a fraction, including repeating decimals. Symbol: Q Examples: 5 9 , 1 8 , 1. 3 ¯ , 16 4
    Irrational Numbers Real numbers that are not rational. When written as a decimal, these numbers do not end nor repeat. Example: e , π , 2 , 5 3
    Integers All positive and negative “counting” numbers and zero. Symbol: Z Example: -4, 6, 23, -10
    Whole Numbers All positive “counting” numbers and zero. Example: 0, 1, 2, 3, ...
    Natural Numbers All positive “counting” numbers. Symbol: N Example: 1, 2, 3, ...

    A counting number is any number that can be counted on your fingers.
    ::计数数字是指指头可以计数的任何数字。

    The real numbers can be grouped together as follows:
    ::实际数字可分类如下:

    Now, let's do the following problems using the different subset of real numbers. 
    ::现在,让我们用真实数字的不同子集 来做下面的问题。

    1. What is the most specific subset of the real numbers that -7 is a part of?
      ::7 -7是真实数字的一部分,其中最具体的子集是什么?

     -7 is an integer.
    ::-7是整数

    1. List all the subsets that 1.3 lies in.
      ::列出1.3中的所有子集 。

    1.3 is a terminating decimal. Therefore , it is considered a rational number. It would also be a real number . As a fraction, we would write 1 3 10 because the 3 is in the tenths position after the decimal.
    ::1. 3 是一个终止的小数小数。 因此, 它被认为是一个合理的数字, 也可以是一个真实的数字。 作为小数, 我们会写1310, 因为小数点后, 3 位居十分之一 。

    1. True or False: 8 3 is a rational number.
      ::真理或假:83是一个合理的数字。

    Yes, by definition, because it is written as a fraction.
    ::是的,顾名思义,因为它是作为一个分数写成的。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to write 0.14141414.... as a fraction.
    ::早些时候,你被要求写0.14141414... ...作为一个分数。

    Let's devise a step-by-step process.
    ::让我们设计一个逐步的过程。

    Step 1: Set your repeating decimal equal to x .

    x = 0.14141414

    ::第1步:将重复的小数小数数设为 x. x=0. 14.141414

    Step 2: Find the repeating digit(s).
    ::第2步:查找重复的数字。

    In this case 14 is repeating.
    ::在这种情况下,14个案件重复。

    Step 3: Move the repeating digits to the left of the decimal point and leave the remaining digits to the right.
    ::第3步:将重复的数字移到小数点左边,将其余的数字移到右边。

    14.14141414

    Step 4: Multiply x by the same factor you multiplied your original repeating decimal to get your new repeating decimal.
    ::第4步:乘以X乘以与乘以原来的重复小数位数相同的因数,以获得新的重复小数位数。

    14.14141414 = 100 ( 0.14141414 )

    So,

    100 x = 14.14141414

    ::所以,100x=14.14141414

    Step 5: Solve your system of linear equations for x .
    ::步骤5:解决 x 的线性方程式系统。

    ( 100 x = 14.14141414 ) ( x = 0.14141414 )
    yields:
    :sad100x=14.14141414)-(x=0.14141414)产量:

    99 x = 14
    so x = 14 99
    ::99x=14so x=1499

    Example 2
    ::例2

    Write 0.327272727... as a fraction.
    ::写0.3272722727... 作为一个分数。

    The 0.3 does not repeat. So, rewrite this as 0.727272727... 0.4 Therefore, the fraction will be:
    ::0. 3 不重复。 所以, 重写为 0. 72727272727272727... - 0. 4。 因此, 分数将是 :

    72 99 4 10 8 11 2 5 40 55 22 55 18 55

    Example 3
    ::例3

    What type of real number is 5 ?
    ::5是什么样的实际数字?

    5 is an irrational number because, when converted to a decimal, it does not end nor does it repeat.
    ::5 是一个不合理的数字,因为当转换为小数点时,它不会结束,也不会重复。

    Example 4
    ::例4

    List all the subsets that -8 is a part of.
    ::列出 - 8 是其中一部分的所有子集 。

     -8 is a negative integer. Therefore, it is also a rational number and a real number.
    ::-8是一个负整数。因此,它也是一个合理的数字和一个真实的数字。

    Example 5
    ::例5

     True or False: 9 is an irrational number.
    ::真理或假:-9是一个非理性的数字。

    9 = 3 , which is an integer. The statement is false.
    ::- 93, 是一个整数。 语句是虚假的 。

    Review
    ::回顾

    What is the most specific subset of real numbers that the following numbers belong in?
    ::以下数字属于哪些最具体的实际数字子集?

    1. 5.67
    2. 6
    3. 9 5
    4. 0
    5. -75
    6. 16

    List ALL the subsets that the following numbers are a part of.
    ::列出下列数字是其中一部分的所有子集 。

    1. 4
    2. 6 9
    3. π

    Determine if the following statements are true or false.
    ::确定以下声明是真实的还是虚假的。

    1. Integers are rational numbers.
      ::整数是合理数字。
    2. Every whole number is a real number.
      ::每个数字都是真实的数字。
    3. Integers are irrational numbers.
      ::整数是非理性数字
    4. A natural number is a rational number.
      ::自然数字是一个合理的数字。
    5. An irrational number is a real number.
      ::一个非理性的数字是一个真实的数字。
    6. Zero is a natural number.
      ::零是一个自然数字。

    Rewrite the following repeating decimals as fractions.
    ::将以下重复的十进制数重写为分数。

    1. 0.4646464646...
    2. 0.81212121212...
    3. 0.35050505050...
    4. 2.485485485485485...
    5. 1.25141414141414...

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。