Section outline

  • Composing functions involves applying one function and then applying another function afterward. In the case of inverse reciprocal functions, you could create compositions of functions such as s e c 1 , c s c 1 , and c o t 1 .
    ::组合功能包括应用一个功能,然后再应用另一个功能,如果是反对等功能,您可以创建职能构成,如 sec-1、csc-1和cot-1。

    Consider the following problem:
    ::考虑以下问题:

    csc ( cot 1 3 )
    ::csc(cot-13)

    Can you solve this problem?
    ::你能解决这个问题吗?

    Composition of Inverse Reciprocal Trig Functions
    ::反对等三角函数构成

    Just as you can apply one function and then another whenever you'd like, you can do the same with inverse reciprocal trig functions. This process is called composition. 
    ::正如您可以应用一个函数和另一个函数一样,只要您愿意,您也可以用反对等三角函数来应用同样的函数。这个过程叫做组合。

    Here we'll explore some examples of composition for these inverse reciprocal trig functions by doing some problems.
    ::在这里,我们将探讨一些关于这些反对等三角功能的构成的例子,通过处理一些问题。

    1. Without a calculator, find cos ( cot 1 3 ) .
    ::1. 没有计算器,请查找cos(cot-13)。

    First, find cot 1 3 , which is also tan 1 3 3 . This is π 6 . Now, find cos π 6 , which is 3 2 . So, our answer is 3 2 .
    ::首先,找到cot- 13, 同时也是tan- 133。 这是 6. 现在, 找到cos_ 6, 也就是 32。 所以, 我们的答案是 32 。

    2. Without a calculator, find sec 1 ( csc π 3 ) .
    ::2. 没有计算器,请找到 秒-1(csc) 3。

    First, csc π 3 = 1 sin π 3 = 1 3 2 = 2 3 = 2 3 3 . Then sec 1 2 3 3 = cos 1 3 2 = π 6 .
    ::首先,csc3=1sin3=132=23=233. 然后秒-1233=cos-1326。

    3. Evaluate cos ( sin 1 3 5 ) .
    ::3. 评价cos(sin-135)。

    Even though this problem is not a critical value, it can still be done without a calculator. Recall that sine is the opposite side over the hypotenuse of a triangle. So, 3 is the opposite side and 5 is the hypotenuse. This is a Pythagorean Triple, and thus, the adjacent side is 4. To continue, let θ = sin 1 3 5 or sin θ = 3 5 , which means θ is in the Quadrant 1 (from our restricted domain , it cannot also be in Quadrant II). Substituting in θ we get cos ( sin 1 3 5 ) = cos θ and cos θ = 4 5 .
    ::尽管这个问题不是一个关键值, 但如果没有计算器, 仍然可以完成。 回顾正弦是三角形的顶部的对立面。 因此, 3是对立面, 5是顶部。 这是Pythagorean Triple, 因此, 相邻的侧面是 4 。 继续, 请让sin - 135 或 sin {35 或 sin {35 , 意思是 在Quadrant 1 (来自我们的限制域, 也不可能在 Quadrant II ) 。 替换在 {cos_ {sin_ 1\\\\\\\\ 3}\ cos\ 和 cos\ 4⁄ 4 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to solve  csc ( cot - 1 3 ) .
    ::早些时候,你被要求解决csc(cot-13)。

    The first step in this problem is to ask yourself  "What angle would produce a cotangent of 3 ? "
    ::这个问题的第一步是问自己,“从什么角度来产生三分之差?”

    Since values for "x" and "y" around the unit circle are all fractions, and cotangent is equal to x y ,  you need to find a pair of equations on the unit circle which, when divided by each other, give 3 as the answer.
    ::由于单位圆周围的“x”和“y”的值都是分数,而余差等于xy,所以在单位圆上需要找到一对方程式,当单位圆对齐时,以3为答案。

    When looking around the unit circle, you can see that cot 30 = 3 2 1 2 = 3
    ::当环视单位圆圆时,您可以看到该圆圆30+3212=3。

    Therefore, cot - 1 3 = 30
    ::因此,3=30=30

    Then you can apply the next function:
    ::然后您可以应用下一个函数 :

    csc 30 = h y p o t e n u s e o p p o s i t e = 1 1 2 = 2
    ::csc30-hypotenus Opposite=1112=2

    And so
    ::如此,这样

    csc ( cot - 1 3 ) = 2
    ::csc( cot-1 3) = 2

    Example 2
    ::例2

    Find the exact value of csc ( cos 1 3 2 ) without a calculator, over its restricted domains.
    ::在其限制域上找到不使用计算器的 csc(cos-132) 的准确值 。

    csc ( cos 1 3 2 ) = csc π 6 = 2
    ::csc = csc = 2= csc = 2= csc = = csc = = csc = 2 (cos - 1 32= csc=2) csc = csc = 6= 2 (cos - 1 32= csc=2) csc= 2 (csc=6= 2= 2 (cs=2)

    Example 3
    ::例3

    Find the exact value of sec 1 ( tan ( cot 1 1 ) ) without a calculator, over its restricted domains.
    ::在限制域上找到没有计算器的 se- 1 (tan(cot- 11)) 的确切值 。

    sec 1 ( tan ( cot 1 1 ) ) = sec 1 ( tan π 4 ) = sec 1 1 = 0
    ::-1(tan(cot-11))=sec-1(tan4)=sec-11=0

    Example 4
    ::例4

    Find the exact value of tan 1 ( cos π 2 ) without a calculator, over its restricted domains.
    ::在其限制域上找到没有计算器的 tan-1(cos2) 的确切值 。

    tan 1 ( cos π 2 ) = tan 1 0 = 0
    ::tan - 1(cos2) =tan - 10=0

    Review
    ::回顾

    Without using technology, find the exact value of each of the following. Use the restricted domain for each function.
    ::在不使用技术的情况下, 找到以下每个函数的准确值 。 对每个函数使用限制域 。

    1. sin ( sec 1 2 )
      :sadsec-12)
    2. cos ( csc 1 1 )
      ::COs(csc-11)
    3. tan ( cot 1 3 )
      :sadcot-13)
    4. cos ( csc 1 2 )
      ::COs(csc-12)
    5. cot ( cos 1 1 )
      ::cot( cos- 11)
    6. csc ( sin 1 2 2 )
      ::csc___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    7. sec 1 ( cos π )
      :sadcos) (cos)
    8. cot 1 ( tan π 4 )
      ::COT-1(tan4)
    9. sec 1 ( csc π 4 )
      :sadcsc%4) (csc%4)
    10. csc 1 ( sec π 3 )
      ::csc-1(sec%3)
    11. cos 1 ( cot π 4 )
      :sadcot%4) (cot%4)
    12. tan ( cot 1 0 )
      ::tan( cot- 10)
    13. sin ( csc 1 2 3 3 )
      :sadcsc-1233) (csc-1233)
    14. cot 1 ( sin π 2 )
      ::COt-1(sin2)
    15. cos ( sec 1 2 3 3 )
      :sadsec-1233) (sec-1233)

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。