4.8 反对等三角函数的构成
Section outline
-
Composing functions involves applying one function and then applying another function afterward. In the case of inverse reciprocal functions, you could create compositions of functions such as , , and .
::组合功能包括应用一个功能,然后再应用另一个功能,如果是反对等功能,您可以创建职能构成,如 sec-1、csc-1和cot-1。Consider the following problem:
::考虑以下问题:
::csc(cot-13)Can you solve this problem?
::你能解决这个问题吗?Composition of Inverse Reciprocal Trig Functions
::反对等三角函数构成Just as you can apply one function and then another whenever you'd like, you can do the same with inverse reciprocal trig functions. This process is called composition.
::正如您可以应用一个函数和另一个函数一样,只要您愿意,您也可以用反对等三角函数来应用同样的函数。这个过程叫做组合。Here we'll explore some examples of composition for these inverse reciprocal trig functions by doing some problems.
::在这里,我们将探讨一些关于这些反对等三角功能的构成的例子,通过处理一些问题。1. Without a calculator, find .
::1. 没有计算器,请查找cos(cot-13)。First, find , which is also . This is . Now, find , which is . So, our answer is .
::首先,找到cot- 13, 同时也是tan- 133。 这是 6. 现在, 找到cos_ 6, 也就是 32。 所以, 我们的答案是 32 。2. Without a calculator, find .
::2. 没有计算器,请找到 秒-1(csc) 3。First, . Then .
::首先,csc3=1sin3=132=23=233. 然后秒-1233=cos-1326。3. Evaluate .
::3. 评价cos(sin-135)。Even though this problem is not a critical value, it can still be done without a calculator. Recall that sine is the opposite side over the hypotenuse of a triangle. So, 3 is the opposite side and 5 is the hypotenuse. This is a Pythagorean Triple, and thus, the adjacent side is 4. To continue, let or , which means is in the Quadrant 1 (from our restricted domain , it cannot also be in Quadrant II). Substituting in we get and .
::尽管这个问题不是一个关键值, 但如果没有计算器, 仍然可以完成。 回顾正弦是三角形的顶部的对立面。 因此, 3是对立面, 5是顶部。 这是Pythagorean Triple, 因此, 相邻的侧面是 4 。 继续, 请让sin - 135 或 sin {35 或 sin {35 , 意思是 在Quadrant 1 (来自我们的限制域, 也不可能在 Quadrant II ) 。 替换在 {cos_ {sin_ 1\\\\\\\\ 3}\ cos\ 和 cos\ 4⁄ 4 。Examples
::实例Example 1
::例1Earlier, you were asked to solve .
::早些时候,你被要求解决csc(cot-13)。The first step in this problem is to ask yourself "What angle would produce a cotangent of "
::这个问题的第一步是问自己,“从什么角度来产生三分之差?”Since values for "x" and "y" around the unit circle are all fractions, and cotangent is equal to you need to find a pair of equations on the unit circle which, when divided by each other, give as the answer.
::由于单位圆周围的“x”和“y”的值都是分数,而余差等于xy,所以在单位圆上需要找到一对方程式,当单位圆对齐时,以3为答案。When looking around the unit circle, you can see that
::当环视单位圆圆时,您可以看到该圆圆30+3212=3。Therefore,
::因此,3=30=30Then you can apply the next function:
::然后您可以应用下一个函数 :
::csc30-hypotenus Opposite=1112=2And so
::如此,这样
::csc( cot-1 3) = 2Example 2
::例2Find the exact value of without a calculator, over its restricted domains.
::在其限制域上找到不使用计算器的 csc(cos-132) 的准确值 。
::csc = csc = 2= csc = 2= csc = = csc = = csc = 2 (cos - 1 32= csc=2) csc = csc = 6= 2 (cos - 1 32= csc=2) csc= 2 (csc=6= 2= 2 (cs=2)Example 3
::例3Find the exact value of without a calculator, over its restricted domains.
::在限制域上找到没有计算器的 se- 1 (tan(cot- 11)) 的确切值 。
::-1(tan(cot-11))=sec-1(tan4)=sec-11=0Example 4
::例4Find the exact value of without a calculator, over its restricted domains.
::在其限制域上找到没有计算器的 tan-1(cos2) 的确切值 。
::tan - 1(cos2) =tan - 10=0Review
::回顾Without using technology, find the exact value of each of the following. Use the restricted domain for each function.
::在不使用技术的情况下, 找到以下每个函数的准确值 。 对每个函数使用限制域 。-
:sec-12)
-
::COs(csc-11) -
:cot-13)
-
::COs(csc-12) -
::cot( cos- 11) -
::csc___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ -
:cos) (cos)
-
::COT-1(tan4) -
:csc%4) (csc%4)
-
::csc-1(sec%3) -
:cot%4) (cot%4)
-
::tan( cot- 10) -
:csc-1233) (csc-1233)
-
::COt-1(sin2) -
:sec-1233) (sec-1233)
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -