Section outline

  • The average weight gain of an infant, after 6 months of age, is one pound a month, until the age of 2. If the average 6-month-old weighs 16 pounds, up to what age would an infant weigh 25 pounds or less?
    ::婴儿在6个月后,平均体重增加是每月一磅,直到2岁。 如果6个月的平均体重为16磅,则婴儿的体重为25磅或不足25磅到什么年龄?

    Basic Inequalities
    ::基本不平等

    Solving a linear inequality is very similar to solving a linear equality, or equation . There are a few very important differences. We no longer use an equal sign. There are four different inequality signs , shown below.
    ::解决线性不平等与解决线性平等或等式非常相似。 有一些非常重要的区别。 我们不再使用平等标志。 下面显示四个不同的不平等迹象。

    < Less than
    ::<小于

    > Greater than
    ::> 大于

    Less than or equal to
    ::小于或等于

    Greater than or equal to
    ::大于或等于

    Notice that the line underneath the and signs indicates “equal to.” The inequality x > 1 would be read, “ x is greater than -1.” We can also graph these solutions on a number line. To graph an inequality on a number line, shading is used. This is because an inequality is a range of solutions, not just one specific number. To graph x > 1 , it would look like this:
    ::请注意 和 符号下方的直线表示“ 相等 ” 。 不平等 x 1 将读为 , “ x 大于 - 1 ” 。 我们也可以用数字线绘制这些解决方案。 要用数字线绘制不平等图, 则使用阴影。 这是因为不平等是一系列解决方案, 而不仅仅是一个特定数字。 图 x 1 将看起来是这样 :

    Notice that the circle at -1 is open . This is to indicate that -1 is not included in the solution. A < sign would also have an open circle. If the inequality was a or sign, then the circle would be closed, or filled in. Shading to the right of the circle shows that any number greater than -1 will be a solution to this inequality.
    ::注意 - 1 的圆是打开的。 这是表示 - 1 不包含在解决方案中 。 < 符号也会有一个开放的圆 。 如果不平等是一个 + 或 + 的符号, 那么圆将被关闭或填满 。 将圆向右方的形状显示, 任何大于 - 1 的数值都将是解决这一不平等的办法 。

    Let's determine whether  x = 8  is a solution to 1 2 x + 6 > 3 .
    ::让我们确定 x8 是否是 12x+6> 3 的解决方案 。

    Plug in -8 for x and test this solution.
    ::x 的 - 8 插件并测试此溶液 。

    1 2 ( 8 ) + 6 > 3 4 + 6 > 3 2 > 3

    Of course, 2 cannot be greater than 3. Therefore , this is not a valid solution.
    ::当然,2个不能大于3个,因此,这不是一个有效的解决办法。

    Now, let's solve the following basic inequalities.
    ::现在,让我们解决以下基本的不平等问题。

    1. Solve and graph the solution to 2 x 5 17 .
      ::解析并绘制2x-517的解决方案图。

    For the most part, solving an inequality is the same as solving an equation. The major difference will be addressed in problem #2 below. This inequality can be solved just like an equation.
    ::大部分情况下,解决不平等与解决等式是一样的。 主要的差别将在下面问题2中解决。 这种不平等可以像解决等式一样解决。

    2 x 5 17   + 5   + 5 _   2 x 2 22 2 x 2

    ::2x-517+5+5+5_2x2__222x__2

    Test a solution, x = 0 : 2 ( 0 ) 5 17 5 17
    ::测试溶液, x=0: 2(0) - 517=51717________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    Plotting the solution, we get:
    ::设计解决方案,我们得到:

    Always test a solution that is in the solution range. It will help you determine if you solved the problem correctly.
    ::总是在解决方案范围内测试一个解决方案。 它会帮助您确定您是否正确解决了问题 。

    1. Solve and graph 6 x + 7 29 .
      ::解析和图表 - 6x+7\\\\\\\29。

    When solving inequalities, be careful with negatives. Let’s solve this problem the way we normally would an equation.
    ::在解决不平等问题时,要小心负面因素。 让我们以我们通常的等式来解决这个问题。

    6 x + 7 29     7   7 _ 6 x 6 x 36 6   x 6

    ::-6x+729 -7 -7*6x6x6*36 -6x6*6

    Let’s check a solution. If x is less than or equal to 6, let’s test 1.
    ::让我们检查一个解决方案。 如果 x 小于或等于 6, 让我们测试 1 。

    6 ( 1 ) + 7 29 6 + 7 29 1 29

    This is not a true inequality. To make this true, we must flip the inequality. Therefore, whenever we multiply or divide by a negative number, we must flip the inequality sign. The answer to this inequality is actually x 6 . Now, let’s test a number in this range.
    ::这不是真正的不平等。 要做到这一点,我们必须翻转不平等。 因此,每当我们以负数乘以或除以负数时,我们必须翻转不平等标志。 这种不平等的答案其实是x6。 现在,让我们在这个范围内测试一个数字。

    6 ( 10 ) + 7 29 60 + 7 29 60 29

    This is true. The graph of the solution is:
    ::这就是事实。解决方案的图示是:

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the last age (the maximum age) that an infant would weigh 25 pounds or less.
    ::早些时候,有人要求你找到婴儿的最后一个年龄(最大年龄),即体重25磅或不足25磅。

    First, write an inequality. Let m represent the age of the infant, in months. Remember, when you get the final answer, you must add 6 for the initial weight of the infant at 6 months.
    ::首先,写一个不平等的字。让 m 代表婴儿的年龄, 在几个月内。 记住, 当得到最后答案时, 6个月时, 婴儿的初始体重必须增加 6 个 。

    16 + m 25 m 9

    ::16+m%25m%9

    Adding 6, we have m 15 . So, up to 15 months, the average baby should weigh 25 pounds or less.
    ::最多15个月,平均婴儿体重应该25磅或不足25磅。

    Example 2
    ::例2

    Is x = 5 a solution to 3 x + 7 > 12 ?
    ::x*% 5 是- 3x+7> 12 的解决方案吗 ?

    Plug -5 into the inequality.
    ::将5分插在不平等中。

    3 ( 5 ) + 7 > 12 15 + 7 > 12

    This is true because 22 is larger than 12. -5 is a solution.
    ::这是正确的,因为22大于12 -5是一个解决办法。

    Example 3
    ::例3

    Solve and graph the solution to  3 8 x + 5 < 26 .
    ::解析和图形显示 38x+5 < 26 的解决方案 。

    No negatives with the x term , so we can solve this inequality like an equation.
    ::在x- term上没有负值, 所以我们可以像方程式一样解决这种不平等。

    3 8 x + 5 < 26   5     5 _   8 3 3 8 x < 21 8 3   x < 56

    ::38x+5 < 5x5 < 26 - 5 - 5_ 83_ 38x < 21883x < 56

    Test a solution, x = 16 : 3 8 ( 16 ) + 5 < 26
    ::测试溶液, x=16:38(16)+5<26

    6 + 5 < 26

    The graph looks like:
    ::图表看起来像:

    Example 4
    ::例4

    Solve and graph the solution to  11 < 4 x .
    ::将解决方案解析和图形到 11 < 4- x 。

    In this inequality, we have a negative x term. Therefore, we will need to flip the inequality.
    ::在这种不平等中,我们有一个消极的x-条件,因此,我们需要扭转这种不平等。

        11 < 4 x 4     4 _ 7 1 < x 1 7 > x

    ::11 < 4 - x - 4 - 4 - 4_ 7 - 1 - 1 - 1 - 1 - 7 > x

    Test a solution, x = 10 : 11 < 4 ( 10 )
    ::测试溶液, x10:11<4-(-)___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    11 < 14

    Notice that we flipped  the inequality sign when we divided  by -1. Also, this equation can also be written x < 7 .
    ::注意当我们除以 -1. 时我们翻转了不平等符号。 另外, 这个方程式也可以写成 x @ @ @ 7 。

    Here is the graph:
    ::以下是图表:

    Review
    ::回顾

    Solve each inequality.
    ::解决每一种不平等。

    1. x + 5 > 6
      ::x+56
    2. 2 x 14
      ::2x14
    3. 4 < x
      ::4x
    4. 3 x 4 8
      ::3x-48
    5. 21 8 x < 45
      ::21-8x<45
    6. 9 > x 2
      ::9>x-2
    7. 1 2 x + 5 12
      ::12x+5=12
    8. 54 9 x
      ::549x
    9. 7 < 8 + 5 6 x
      ::-7<8+56x
    10. 10 3 4 x < 8
      ::10-34x8
    11. 4 x + 15 47
      ::4x+15447
    12. 0.6 x 2.4 < 4.8
      ::0.6x-2.4 < 4.8
    13. 1.5 > 2.7 0.3 x
      ::1.52.7-0.3x
    14. 11 < 12 x + 121
      ::- 11 < 12x+121
    15. 1 2 3 4 x 5 8
      ::12-34x58

    For questions 16 and 17, write the inequality statement given by the graph below.
    ::对于问题16和17,请写下图提供的不平等情况说明。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。