1.10 解决基本不平等
Section outline
-
The average weight gain of an infant, after 6 months of age, is one pound a month, until the age of 2. If the average 6-month-old weighs 16 pounds, up to what age would an infant weigh 25 pounds or less?
::婴儿在6个月后,平均体重增加是每月一磅,直到2岁。 如果6个月的平均体重为16磅,则婴儿的体重为25磅或不足25磅到什么年龄?Basic Inequalities
::基本不平等Solving a linear inequality is very similar to solving a linear equality, or equation . There are a few very important differences. We no longer use an equal sign. There are four different inequality signs , shown below.
::解决线性不平等与解决线性平等或等式非常相似。 有一些非常重要的区别。 我们不再使用平等标志。 下面显示四个不同的不平等迹象。Less than
::<小于Greater than
::> 大于Less than or equal to
::小于或等于Greater than or equal to
::大于或等于Notice that the line underneath the and signs indicates “equal to.” The inequality would be read, “ is greater than -1.” We can also graph these solutions on a number line. To graph an inequality on a number line, shading is used. This is because an inequality is a range of solutions, not just one specific number. To graph , it would look like this:
::请注意 和 符号下方的直线表示“ 相等 ” 。 不平等 x 1 将读为 , “ x 大于 - 1 ” 。 我们也可以用数字线绘制这些解决方案。 要用数字线绘制不平等图, 则使用阴影。 这是因为不平等是一系列解决方案, 而不仅仅是一个特定数字。 图 x 1 将看起来是这样 :Notice that the circle at -1 is open . This is to indicate that -1 is not included in the solution. A < sign would also have an open circle. If the inequality was a or sign, then the circle would be closed, or filled in. Shading to the right of the circle shows that any number greater than -1 will be a solution to this inequality.
::注意 - 1 的圆是打开的。 这是表示 - 1 不包含在解决方案中 。 < 符号也会有一个开放的圆 。 如果不平等是一个 + 或 + 的符号, 那么圆将被关闭或填满 。 将圆向右方的形状显示, 任何大于 - 1 的数值都将是解决这一不平等的办法 。Let's determine whether is a solution to .
::让我们确定 x8 是否是 12x+6> 3 的解决方案 。Plug in -8 for and test this solution.
::x 的 - 8 插件并测试此溶液 。Of course, 2 cannot be greater than 3. Therefore , this is not a valid solution.
::当然,2个不能大于3个,因此,这不是一个有效的解决办法。Now, let's solve the following basic inequalities.
::现在,让我们解决以下基本的不平等问题。-
Solve and graph the solution to
.
::解析并绘制2x-517的解决方案图。
For the most part, solving an inequality is the same as solving an equation. The major difference will be addressed in problem #2 below. This inequality can be solved just like an equation.
::大部分情况下,解决不平等与解决等式是一样的。 主要的差别将在下面问题2中解决。 这种不平等可以像解决等式一样解决。
::2x-517+5+5+5_2x2__222x__2Test a solution,
::测试溶液, x=0: 2(0) - 517=51717________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Plotting the solution, we get:
::设计解决方案,我们得到:Always test a solution that is in the solution range. It will help you determine if you solved the problem correctly.
::总是在解决方案范围内测试一个解决方案。 它会帮助您确定您是否正确解决了问题 。-
Solve and graph
.
::解析和图表 - 6x+7\\\\\\\29。
When solving inequalities, be careful with negatives. Let’s solve this problem the way we normally would an equation.
::在解决不平等问题时,要小心负面因素。 让我们以我们通常的等式来解决这个问题。
::-6x+729 -7 -7*6x6x6*36 -6x6*6Let’s check a solution. If is less than or equal to 6, let’s test 1.
::让我们检查一个解决方案。 如果 x 小于或等于 6, 让我们测试 1 。This is not a true inequality. To make this true, we must flip the inequality. Therefore, whenever we multiply or divide by a negative number, we must flip the inequality sign. The answer to this inequality is actually . Now, let’s test a number in this range.
::这不是真正的不平等。 要做到这一点,我们必须翻转不平等。 因此,每当我们以负数乘以或除以负数时,我们必须翻转不平等标志。 这种不平等的答案其实是x6。 现在,让我们在这个范围内测试一个数字。This is true. The graph of the solution is:
::这就是事实。解决方案的图示是:Examples
::实例Example 1
::例1Earlier, you were asked to find the last age (the maximum age) that an infant would weigh 25 pounds or less.
::早些时候,有人要求你找到婴儿的最后一个年龄(最大年龄),即体重25磅或不足25磅。First, write an inequality. Let m represent the age of the infant, in months. Remember, when you get the final answer, you must add 6 for the initial weight of the infant at 6 months.
::首先,写一个不平等的字。让 m 代表婴儿的年龄, 在几个月内。 记住, 当得到最后答案时, 6个月时, 婴儿的初始体重必须增加 6 个 。
::16+m%25m%9Adding 6, we have . So, up to 15 months, the average baby should weigh 25 pounds or less.
::最多15个月,平均婴儿体重应该25磅或不足25磅。Example 2
::例2Is a solution to ?
::x*% 5 是- 3x+7> 12 的解决方案吗 ?Plug -5 into the inequality.
::将5分插在不平等中。This is true because 22 is larger than 12. -5 is a solution.
::这是正确的,因为22大于12 -5是一个解决办法。Example 3
::例3Solve and graph the solution to .
::解析和图形显示 38x+5 < 26 的解决方案 。No negatives with the term , so we can solve this inequality like an equation.
::在x- term上没有负值, 所以我们可以像方程式一样解决这种不平等。
::38x+5 < 5x5 < 26 - 5 - 5_ 83_ 38x < 21883x < 56Test a solution,
::测试溶液, x=16:38(16)+5<26The graph looks like:
::图表看起来像:Example 4
::例4Solve and graph the solution to .
::将解决方案解析和图形到 11 < 4- x 。In this inequality, we have a negative term. Therefore, we will need to flip the inequality.
::在这种不平等中,我们有一个消极的x-条件,因此,我们需要扭转这种不平等。
::11 < 4 - x - 4 - 4 - 4_ 7 - 1 - 1 - 1 - 1 - 7 > xTest a solution,
::测试溶液, x10:11<4-(-)___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Notice that we flipped the inequality sign when we divided by -1. Also, this equation can also be written .
::注意当我们除以 -1. 时我们翻转了不平等符号。 另外, 这个方程式也可以写成 x @ @ @ 7 。Here is the graph:
::以下是图表:Review
::回顾Solve each inequality.
::解决每一种不平等。-
::x+56 -
::2x14 -
::4x -
::3x-48 -
::21-8x<45 -
::9>x-2 -
::12x+5=12 -
::549x -
::-7<8+56x -
::10-34x8 -
::4x+15447 -
::0.6x-2.4 < 4.8 -
::1.52.7-0.3x -
::- 11 < 12x+121 -
::12-34x58
For questions 16 and 17, write the inequality statement given by the graph below.
::对于问题16和17,请写下图提供的不平等情况说明。Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
Solve and graph the solution to
.