3.1 检查线性系统的解决方案
章节大纲
-
The Hiking Club is buying nuts to make trail mix for a fundraiser. Three pounds of almonds and two pounds of cashews cost a total of $36. Three pounds of cashews and two pounds of almonds cost a total of $39. Is ( a , c ) = ($6, $9) a solution to this system?
::三磅杏仁和两磅腰果总共需要36美元。 三磅腰果和两磅杏仁总共需要39美元。 (a, c) = (6, 9) 是这个系统的解决办法吗?Solution to a System of Linear Equations
::线线性等式系统解决方案A system of linear equations consists of the equations of two lines. The solution to a system of linear equations is the point which lies on both lines. In other words, the solution is the point where the two lines intersect. To verify whether a point is a solution to a system or not, we will either determine whether it is the point of intersection of two lines on a graph or we will determine whether or not the point lies on both lines algebraically.
::线性方程式系统由两行的方程式组成。 线性方程式系统的解决方案是两行的点。 换句话说, 解决方案是两行交叉的点。 要验证一个点是否是一个系统的解决方案, 我们要么确定它是否是一个图形上两行的交叉点, 要么我们确定该点是否位于两行的代数线上。Let's determine whether the given points are a solution to the systems of equations below.
::让我们来决定给定的点数是否是以下方程式系统的解决办法。-
Is the point (5, -2) the solution of the system of linear equations shown in the graph below?
::点(5, 2)是否是下图所示线性方程式系统的解决办法?
Yes, the lines intersect at the point (5, -2) so it is the solution to the system.
::是的,线在点(5,2)交叉,所以这是系统的解决办法。-
Is the point (-3, 4) the solution to the system given below?
::要点(-3,4)是否是下文所述系统的解决办法?
::2 - 3y18x+2y=6No, (-3, 4) is not the solution. If we replace the and in each equation with -3 and 4 respectively, only the first equation is true. The point is not on the second line; therefore it is not the solution to the system.
::否, (3, 4) 不是解决方案。 如果我们将每个方程中的 x 和 y 分别替换为 - 3 和 4, 只有第一个方程是真实的。 点不在第二行, 因此不是系统的解决办法 。Now, let's find the solution to the system below.
::现在,让我们找出下面系统的解决办法。
::x=53x--2y=25Because the first line in the system is vertical , we already know the x -value of the solution, . Plugging this into the second equation, we can solve for y .
::因为系统中的第一行是垂直的, 我们已经知道溶液的 X 值, x= 5 。 将它插进第二个方程, 我们可以解决y 。
::3(5)-2y=2515-2y=25-2y=10y=10y5The solution is (5, -5). Check your solution to make sure it's correct.
::答案是 (5,5,5) 检查你的解决方案以确保它是正确的 。You can also solve systems where one line is horizontal in this manner.
::您也可以用这种方式解析一条线是水平线的系统 。Examples
::实例Example 1
::例1Earlier, you were asked if (a, c) = ($6, $9) is a solution to the system of equations .
::早些时候,有人问你(a, c) = (6, 9) 是否是方程式系统的解决办法。The system of linear equations represented by this situation is:
::以这种情况为代表的线性方程式系统是:
::3a+2c=363c+2a=39If we plug in $6 for a and $9 for c , both equations are true. Therefore ($6, $9) is a solution to the system.
::如果我们用6美元加1美元和9美元加C,这两个方程式都是真实的。因此(6,9美元)是系统的解决办法。Example 2
::例2Is the point (-2, 1) the solution to the system shown below?
::要点(-2,1)是否是下文所述系统的解决办法?No, (-2, 1) is not the solution. The solution is where the two lines intersect which is the point (-3, 1).
::否, (-2, 1) 不是解决办法, 解决办法是两条线相交之处, 也就是点( -3, 1) 。Example 3
::例3Verify algebraically that (6, -1) is the solution to the system shown below.
::校验代数(6,-1)是以下系统的解决办法。
::3x-4y=222x+5y=7By replacing and in both equations with 6 and -1 respectively (shown below), we can verify that the point (6, -1) satisfies both equations and thus lies on both lines.
::通过将两个方程中的x和y分别替换为6和-1(如下文所示),我们可以核实点(6,-1)满足了两个方程,因此是两个线的。Example 4
::例4Explain why the point (3, 7) is the solution to the system:
::解释为何系统的解决办法(3、7)是:
::y=7x=3 y=7x=3The horizontal line is the line containing all points where the coordinate 7. The vertical line is the line containing all points where the coordinate 3. Thus, the point (3, 7) lies on both lines and is the solution to the system.
::7. 垂直线是包含X-坐标3的所有点的线条。 因此,两条线上都有点(3、7),是系统的解决办法。Review
::回顾Match the solutions with their systems.
::解决方案与其系统匹配。-
(1, 2)
-
-
(2, 1)
-
-
(-1, 2)
-
-
(-1, -2)
-
Determine whether each ordered pair represents the solution to the given system.
::确定每对定购夫妇是否代表给定系统的解决方案。- .
- .
- .
- .
- .
- .
Find the solution to each system below.
::为下面的每个系统找出解决办法。- .
- .
- .
- .
-
Describe the solution to a system of linear equations.
::描述线性方程式系统的解决方案 。 -
Can you think of why a linear system of two equations would not have a unique solution?
::你能想到两个方程式的线性系统 为何没有独特的解决方案吗?
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
Is the point (5, -2) the solution of the system of linear equations shown in the graph below?