Section outline

  • For a matinee movie, a movie theater charges the following prices:
    ::电影院收取以下价格:

    Kids: $5 Adults: $8 Seniors: $6
    ::儿童:5美元 成人:8美元 老年人:6美元

    For the same movie at night, the theater charges the following prices:
    ::在同一部电影的夜间, 剧院收取以下价格:

    Kids: $7 Adults: $10 Seniors: $8
    ::儿童:7美元 成人:10美元 老年人:8美元

    How could we organize this data to easily compare the prices?
    ::我们如何组织这种数据来方便地比较价格?

    Matrices
    ::儿数

    A matrix consists of data that is organized into rows and columns to form a rectangle. For example, we could organize the data collected at a movie theater concession stand during a matinee show into the follow matrix:
    ::矩阵由按行和列排列的数据组成,形成矩形。例如,我们可以将电影院特许展台收集的数据组织起来,然后在以下矩阵中展示:

    S M L popcorn   soda [ 20 46 32 15 53 29 ]

    ::苏打汽水[204632155329]

    Now we can easily compare the quantities of each size sold. These values in the matrix are called elements.
    ::现在我们可以很容易地比较每个售出大小的数量。 矩阵中的这些值被称为元素 。

    This particular matrix has two rows and three columns. Matrices are often described in terms of  dimensions (rows by columns). This matrix is a 2 × 3 (read as '2 by 3') matrix.
    ::这个特定的矩阵有两行和三列,矩阵通常用尺寸(逐列)来描述。这个矩阵是一个 2x3 矩阵(读作“2乘3”) 矩阵。

    The variables m (rows) and n (columns) are most often used to represent unknown dimensions. Matrices in which the number of rows equals the number of columns ( m = n ) are called square matrices .
    ::变量 m (行) 和 n (列) 通常用于代表未知的维度。行数等于列数( m=n) 的矩阵称为平方矩阵。

    Matrices which have the same dimensions and all corresponding elements equal are said to be equal matrices .
    ::具有相同维度和所有相应元素相等的母体据说是平等的矩阵。

    Let's solve  the following problems  about matrices.
    ::让我们解决以下关于矩阵的问题。

    1. Using the matrix above, what is the value of the element in the second row, second column?
      ::使用上面的矩阵,第二行第二列中元素值是多少?

    Column 2           S     M     L     popcorn Row 2 soda [ 20 46 32 15 53 29 ]

    ::第2列 S M L 爆米花Row 2soda[204632155329]

    We must see where the second row and second column overlap and identify the element in that location. In this case. it is 53.
    ::我们必须看到第二行和第二列的重叠之处,并确定该位置的元素。 在这种情况下,是53。

    1. Determine the dimensions ( m × n ) of the matrices below.
      ::确定以下矩阵的尺寸(mxn)。

    1. [ 3 2 1 0 ]

    This matrix has 2 rows and 2 columns. Therefore it is a 2 × 2 matrix.
    ::这个矩阵有两个行和两个列。 因此它是一个 2x2 矩阵 。


    1. [ 4 3 2 7 3 5 4 6 9 1 0 2 ]

    This matrix has 3 rows and 4 columns. Therefore it is a 3 × 4 matrix.
    ::这个矩阵有3行和4列,因此是一个 3x4 矩阵。


    1. [ 2 3 1 ]

    This matrix has 3 rows and 1 column. Therefore it is a 3 × 1 matrix.
    ::该矩阵有3行和1列,因此是一个 3x1 矩阵。

    1. Which two matrices are equal? Explain your answer.
      ::哪些两个矩阵相等? 请解释您的答复 。

    A = [ 1 5 2 4 8 3 ] B = [ 5 4 3 1 2 8 ] C = [ 1 5 2 4 8 3 ]

    ::A=[1-5-2483]B=[-543-128]C=[1-5-2483]

    Matrices A and C are equal matrices. They are both 3 × 2 matrices and have all of the same elements. Matrix B is a 2 × 3 matrix so even though it contains the same elements, they are arranged differently preventing it from being equal to the other two.
    ::矩阵 A 和 C 是 等式 矩阵 。 它们都是 3x2 矩阵, 具有所有相同的元素 。 矩阵 B 是一个 2x3 矩阵, 即使包含相同的元素 , 它们的排列也不同 , 无法 等同其它两个元素 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked how to organize the data to easily compare the prices of a movie theater.
    ::早些时候,你被问及如何组织数据 以方便地比较电影院的价格。

    To make it easy to compare prices, we could organize the data in matrix like this one:
    ::为了便于比较价格,我们可以将数据组织成像这样的矩阵:

          K A S Matinee       Night [ 5 8 6 7 10 8 ]

    ::[5867108]

    Example 2
    ::例2

    What are the dimensions of the matrix: [ 3 5 1 0 ] ?
    ::矩阵的层面是什么:[3-510]?

    The dimensions are 1 × 4 .
    ::尺寸是1×4

    Example 3
    ::例3

    In the matrix

    [ 8 5 4 2 6 3 3 0 7 1 3 9 ]
    what is the element in the second row, third column?
    ::在矩阵[8-54-26-330-7139]中,第二行第三列的元素是什么?

    The element in the second row, third column is -3 as shown below:
    ::第二行中的元素,第三列为 -3,如下所示:

    Column 3   Row 2  [ 8 5 4 2 6 3 3 0 7 1 3 9 ]

    ::第3列 列 2 [8-54-26-330-7139]

    Example 4
    ::例4

    Are the matrices A = [ 1 4 9 ] and

    B = [ 1 4 9 ]
    equal matrices?
    ::矩阵A=[-149]和B=[-149]是否相等?

    No, A and B are not equal matrices. They have the same elements, but the dimensions are not the same.
    ::不,A和B不是平等的矩阵。它们有相同的元素,但尺寸不同。

    Review
    ::回顾

    Use the matrices below to answer questions 1-7 that follow:
    ::使用以下矩阵回答以下问题1-7:

    A = [ 2 3 1 5 8 4 ] B = [ 2 1 3 5 ] C = [ 5 1 3 8 2 6 4 9 7 ]

    ::A=[231-5-84]B=[21-35]C=[-5138-26497]

    D = [ 2 1 3 5 ] E = [ 5 2 8 3 4 1 ] F = [ 5 1 8 2 6 3 ]

    ::D=[21-35]E=[-52-52-8341]F=[5-18-26-3]

    1. What are the dimensions of
      1. Matrix B ?
        ::矩阵B?
      2. Matrix E ?
        ::E矩阵?
      3. Matrix F ?
        ::F矩阵?

      ::母体B的维度是多少?母体E的维度是多少?母体F的维度是多少?母体F的维度是多少?
    2. Which matrices have the same dimensions?
      ::哪些矩阵具有相同的维度?
    3. Which matrices are square matrices?
      ::哪些矩阵是方矩阵?
    4. Which matrices are equal?
      ::哪些矩阵是相等的?
    5. What is the element in row 1, column 2 of Matrix C ?
      ::矩阵C第1行第2列的元素是什么?
    6. What is the element in row 3, column 1 of Matrix E ?
      ::矩阵E第1列第3行的元素是什么?
    7. What is the element in row 1, column 1 of Matrix D ?
      ::矩阵D第1列第1行的元素是什么?
    8. Write a matrix with dimensions 3 × 4 .
      ::以维度 3x4 写一个矩阵。
    9. Write a matrix with dimensions 7 × 2 .
      ::写一个尺寸为 7x2 的矩阵。

    For problems 10-14, determine if the statements are true or false.
    ::对于10-14的问题,请确定这些声明是真实的还是虚假的。

    1. A 3 × 2 and a 2 × 3 are equal.
      ::A 3x2 和 a 2x3 等值 。
    2. Two matrices are equal if every element within the two matrices is the same.
      ::如果两个矩阵中的每个要素相同,则两个矩阵相同。
    3. A matrix is a way to organize data.
      ::矩阵是组织数据的一种方法。
    4. The element in row 2, column 2 in F above is -1.
      ::第2行,F栏2中的元素是-1。
    5. The element in row 2, column 2 in F above is 6.
      ::第2行2栏F栏2的元素是6。
    6. Organize the data into a matrix: A math teacher gave her class three tests during the semester. On the first test there were 10 A’s, 8 B’s, 12 C’s, 4 D’s and 1 F. On the second test there were 8 A’s, 11 B’s, 14 C’s, 2 D’s and 0 F’s. On the third test there were 13 A’s, 7 B’s, 8 C’s, 4 D’s and 3 F’s.
      ::将数据组织成一个矩阵:一位数学教师在学期给了她三次考试。 在第一个测试中,有10个A、8个B、12个C、4个D和1个F。 在第二个测试中,有8个A、11个B、14个C、2个D和0个F。 在第三个测试中,有13个A、7个B、8个C、4个D和3个F。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。