Section outline

  • F or a matinee movie, a movie theater charges the following prices:
    ::电影院收取以下价格:

    Kids: $5 Adults: $8 Seniors: $6
    ::儿童:5美元 成人:8美元 老年人:6美元

    For the same movie at night, the theater charges the following prices:
    ::在同一部电影的夜间, 剧院收取以下价格:

    Kids: $7 Adults: $10 Seniors: $8
    ::儿童:7美元 成人:10美元 老年人:8美元

    H ow could we determine how much more the theater charges at night for each ticket type?
    ::我们怎样才能确定每张票 晚上的剧院收费 还要多多少?

    Adding and Subtracting Matrices
    ::添加和减法

    If two matrices have the same dimensions , then they can be added or subtracted by adding or subtracting corresponding elements as shown below.
    ::如果两个矩阵的尺寸相同,则可以通过增加或减去下列相应要素而增减。

    Addition :
    ::加:

    [ a b c d ] + [ e f g h ] = [ a + e b + f c + g d + h ]

    ::[abcd]+[efgh]=[a+eb+fc+gd+h]

    Subtraction :
    ::减法 :

    [ a b c d ] [ e f g h ] = [ a e b f c g d h ]

    ::[abcd]-[efgh]=[a-eb-fc-gd-h]

    It is important to note that the two matrices are not required to be square matrices . The requirement is that they are the same dimensions. In other words, you can add two matrices that are both 2 × 3 , but you cannot add a 2 × 2 matrix with a 3 × 2 matrix. Before attempting to add two matrices, check to make sure that they have the same dimensions.
    ::必须指出的是,这两个矩阵不需要是平方矩阵。 要求是它们是相同的维度。 换句话说, 您可以添加两个矩阵, 两者都是 2x3, 但是您不能用 3x2 矩阵添加 2x2 矩阵。 在试图添加两个矩阵之前, 请检查以确保它们具有相同的维度 。

    Commutative and Associative Properties of Addition
    ::增加的动产和共同财产

    The Commutative Property of Addition states that a + b = b + a for real numbers, a and b . Does this property hold for matrices? The Associative Property of Addition states that a + ( b + c ) = ( a + b ) + c for real numbers, a , b and c . Does this property hold for matrices? Consider the matrices below:
    ::添加商品的公用财产规定,a+b=b+a为实际数字,a和b。该财产是否持有矩阵?附加商品的联营财产规定,a+(b+c)=(a+b)+c为实际数字,a、b和c。该财产是否持有矩阵?考虑以下矩阵:

    A = [ 3 7 4 1 ] B = [ 5 1 8 2 ] C = [ 6 10 5 3 ]

    ::A=[-374--1]B=[51-8-2]C=[-6-1053]

    1. Find

    A + B [ 3 7 4 1 ] + [ 5 1 8 2 ] = [ 2 8 4 3 ]

    ::1. 查找A+B[-374-1]+[51-8-2]=[28-4-3]

    2. Find

    B + A [ 5 1 8 2 ] + [ 3 7 4 1 ] = [ 2 8 4 3 ]

    ::2. 查找B+A[51-8-2]+[-374-1]=[28-4-3]

    Since A + B = B + A , we can conjecture that matrix addition is commutative.
    ::自A+B=B+A以来,我们可以推测,增加的矩阵是通融的。

    3. Find

    ( A + B ) + C ( [ 3 7 4 1 ] + [ 5 1 8 2 ] ) + [ 6 10 5 3 ] = [ 2 8 4 3 ] + [ 6 10 5 3 ] = [ 4 2 1 0 ]

    ::3. 查找(A+B)+C([-374-1]+[51-8-2])+[-6-1053]=[28-4-3]+[-6-1053]=[-4-210]]

    4. Find

    A + ( B + C ) [ 3 7 4 1 ] + ( [ 5 1 8 2 ] + [ 6 10 5 3 ] ) = [ 3 7 4 1 ] + [ 1 9 3 1 ] = [ 4 2 1 0 ]

    ::4. 查找A+(B+C)[-374-1]+([51-8-2]+[-6-1053])=[-374-1]+[-1-9-31]=[-4-210]]

    Since ( A + B ) + C = A + ( B + C ) , we can conjecture that the associative property is true for matrix addition as well.
    ::由于(A+B)+C=A+(B+C),我们可以推断组合属性对于矩阵添加也是真实的。

    Commutative Property: A + B = B + A
    ::动产:A+B=B+A

    Associative Property: ( A + B ) + C = A + ( B + C )
    :sadA+B)+C=A+(B+C)

    Note that these properties do not work with subtraction with real numbers. For example: 7 5 5 7 . Because they do not hold for subtraction of real numbers, they also do not work with matrix subtraction.
    ::* 注意这些特性与实际数字的减法不起作用,例如:7-55-7。由于这些特性不等于实际数字的减法,因此也与矩阵减法不起作用。

    Let's find the sum of the following matrices:

    [ 4 5 6 3 7 9 ] + [ 1 4 8 0 3 12 ] =

    ::我们来看看以下矩阵的总和:[4-56-379]+[-1480-312]=

    By adding the elements in corresponding positions we get:
    ::通过在相应的立场中增加以下内容:

    [ 4 5 6 3 7 9 ] + [ 1 4 8 0 3 12 ] = [ 4 + 1 5 + 4 6 + 8 3 + 0 7 + 3 9 + 12 ] = [ 3 1 14 3 4 21 ]

    Let's find the difference of the following matrices:

    [ 7 6 9 10 ] [ 3 2 8 15 ] =

    ::让我们发现以下矩阵的差别:[-76-910]-[-3-2815]=

    By subtracting the elements in corresponding positions we get:
    ::通过在相应的位置上减去元素,我们得到了:

    [ 7 6 9 10 ] [ 3 2 8 15 ] = [ 7 ( 3 ) 6 ( 2 ) 9 8 10 15 ] = [ 4 8 17 5 ]

    Now, let's perform the indicated operation :

    [ 4 2 5 3 13 8 ] + [ 7 1 0 5 2 6 ]

    ::现在,让我们执行指示的操作 : [ -425 - 3138] + [7 - 10 - 526]

    In this case the first matrix is 3 × 2 and the second matrix is 2 × 3 . Because they have different dimensions they cannot be added.
    ::在这种情况下,第一个矩阵是3×2,第二个矩阵是2×3,因为它们有不同的维度,因此不能添加。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to determine how much more the theater charges at night for each ticket. 
    ::早些时候,你被要求确定 每张票晚上的剧场费用 有多少?

    We could organize the data into two separate matrices and subtract.
    ::我们可以将数据分为两个不同的矩阵和减法。

    [ 7 10 8 ] [ 5 8 6 ] = [ 2 2 2 ]

    We can now easily see that the movie theater charges $2 more for each ticket type at night.
    ::我们现在很容易看出 电影院每张票 晚上每张票多收2美元

    Example 2
    ::例2

    Perform the indicated operation.

    [ 3 7 ] + [ 1 8 ]

    ::[3-7]+[-18]


    [ 3 7 ] + [ 1 8 ] = [ 3 + ( 1 ) 7 + 8 ] = [ 2 1 ]

    Example 3
    ::例3

    Perform the indicated operation.

    [ 1 5 ] [ 3 3 4 1 ]

    ::[1-5] -[3-341]

    These matrices cannot be subtracted because they have different dimensions.
    ::这些矩阵因具有不同维度而无法减去。

    Example 4
    ::例4

    Perform the indicated operation.

    [ 6 7 11 5 ] [ 2 4 3 9 ]

    ::[6-7-115]-[-24-39]


    [ 6 7 11 5 ] [ 2 4 3 9 ] = [ 6 ( 2 ) 7 4 11 ( 3 ) 5 9 ] = [ 8 11 8 4 ]

    Review
    ::回顾

    Perform the indicated operation (if possible).
    ::执行指示的操作(如果可能)。

    1. .
    [ 2 1 5 0 ] + [ 6 0 3 4 ]
    1. .
    [ 3 2 5 1 10 9 ] [ 2 7 10 8 7 5 ]
    1. .
    [ 4 2 12 7 ] + [ 1 9 2 0 ]
    1. .
    [ 1 4 1 12 2 6 14 5 ] [ 3 1 7 6 ]
    1. .
    [ 4 1 ] + [ 0 5 ] [ 12 3 ]
    1. .
    [ 3 5 ] + [ 2 1 ]
    1. .
    [ 2 7 ] + [ 3 5 ]
    1. .
    [ 11 7 3 9 15 8 ] + [ 20 4 7 1 11 13 ]
    1. .
    [ 25 19 5 ] [ 11 20 3 ]
    1. .
    [ 2 5 3 9 15 8 1 4 6 ] + [ 3 8 3 11 6 7 0 8 5 ]
    1. .
    [ 3 2 4 1 ] [ 6 11 13 17 8 10 ]
    1. .
    [ 5 2 9 3 ] + [ 3 5 8 12 ]
    1. .
    ( [ 5 2 3 1 ] + [ 8 5 6 13 ] ) [ 10 8 9 1 ]
    1. .
    [ 5 2 11 3 ] ( [ 8 2 3 5 ] + [ 12 3 6 15 ] )
    1. .

    ( [ 22 7 5 3 11 8 ] [ 8 9 15 12 10 1 ] ) + [ 5 11 17 3 9 4 ]

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。