Section outline

  • You are hiking one day with friends. When you stop to examine your map, you mark your position on a polar plot with your campsite at the origin, like this
    ::有一天你和朋友一起徒步远足。 当你停下来检查你的地图时, 你用你的营地, 像这样的原地, 标记你在一个极地阴谋上的位置。

    You decide to plot your position on a different map, which has a rectangular grid on it instead of a polar plot. Can you convert your coordinates from the polar representation to the rectangular one?
    ::您决定在不同地图上绘制您的位置, 该地图上有一个矩形网格, 而不是一个极图。 您能否将您的坐标从极代表面转换为矩形代表面 ?

    Converting Polar Coordinates to Rectangular Coordinates
    ::将极坐标转换为矩形坐标

    Just as x and y are usually used to designate the rectangular coordinates of a point, r and θ are usually used to designate the of the point. r is the distance of the point to the origin. θ is the angle that the line from the origin to the point makes with the positive x axis.
    ::正如x和y通常用于指定点的矩形坐标一样,r 和 通常用于指定点的矩形坐标。 r 是点与源的距离。 是线从源到点与正x- 轴之间的角。

    The diagram below shows both polar and Cartesian coordinates applied to a point P . By applying trigonometry, we can obtain equations that will show the relationship between polar coordinates ( r , θ ) and the rectangular coordinates ( x , y )
    ::下图显示适用于P点的极坐标和笛卡尔坐标。 通过采用三角测量法,我们可以得到方程,以显示极坐标(r, )和矩形坐标(x,y)之间的关系。

    The point P has the polar coordinates ( r , θ ) and the rectangular coordinates ( x , y ) .
    ::P点有极地坐标(r,)和矩形坐标(x,y)。

    Therefore
    ::因此,

    x = r cos θ r 2 = x 2 + y 2 y = r sin θ tan θ = y x

    ::x=rcosr2=x2+y2y=rsintanyx

    These equations, also known as coordinate conversion equations, will enable you to convert from polar to rectangular form .
    ::这些方程式,也称为坐标转换方程式, 将使您能够从极向矩形转换。

    Converting Coordinates 
    ::转换坐标

    Given the following polar coordinates, find the corresponding rectangular coordinates of the points: W ( 4 , 200 ) , H ( 4 , π 3 )
    ::根据以下极坐标,找到各点对应的矩形坐标:W(4)-200)、H(4)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    For W ( 4 , 200 ) , r = 4 and θ = 200
    ::W(4,-200),r=4 和200

    x = r cos θ y = r sin θ x = 4 cos ( 200 ) y = 4 sin ( 200 ) x = 4 ( .9396 ) y = 4 ( .3420 ) x 3.76 y 1.37

    ::x=rcosy=rsinx=4cos(-200)y=4sin(--200)x=4(--.9396y=4(-3420x_3.76y)1.37)

    The rectangular coordinates of W are approximately ( 3.76 , 1.37 ) .
    ::W的矩形坐标约为(-3.76,1.37)。

    For H ( 4 , π 3 ) , r = 4 and θ = π 3
    ::H(4,XIII3),r=4和3

    x = r cos θ y = r sin θ x = 4 cos π 3 y = 4 sin π 3 x = 4 ( 1 2 ) y = 4 ( 3 2 ) x = 2 y = 2 3

    ::x=rsinx=4cos3y=4sin3y=4x4(12)y=4(32)x=2y=23

    The rectangular coordinates of H are ( 2 , 2 3 ) or approximately ( 2 , 3.46 ) .
    ::H的矩形坐标为(2,23)或大约(2,3.46)。

    Converting Equations 
    ::转换等号

    1. In addition to writing polar coordinates in rectangular form, the coordinate conversion equations can also be used to write polar equations in rectangular form.
    ::1. 除了以矩形形式写出极坐标外,坐标转换方程式还可以用于以矩形形式写出极方程式。

    Write the polar equation r = 4 cos θ in rectangular form.
    ::以矩形形式写入极方程式 r=4cos。

    r = 4 cos θ r 2 = 4 r cos θ M u l t i p l y   b o t h   s i d e s   b y   r . x 2 + y 2 = 4 x r 2 = x 2 + y 2   a n d   x = r cos θ

    ::r= 4cosr2= 4rcos □ 以 r.x2+y2= 4xr2=x2+y2 和 x=rcos= rcos 和 x= rcos= rtip 双侧均匀度为 r.x2+y2= 4xr2=x2+y2= x2+y2

    The equation is now in rectangular form. The r 2 and θ have been replaced. However, the equation, as it appears, does not model any shape with which we are familiar. Therefore, we must continue with the conversion.
    ::方程现已以矩形形式出现。 r2 和 已被替换。 但是, 方程似乎并不模拟我们熟悉的任何形状。 因此, 我们必须继续转换 。

    x 2 4 x + y 2 = 0 x 2 4 x + 4 + y 2 = 4 C o m p l e t e   t h e   s q u a r e   f o r   x 2 4 x . ( x 2 ) 2 + y 2 = 4 F a c t o r   x 2 4 x + 4.

    ::x2-4x+y2=0x2-4x+4+y2=4 x2-4x.(x-2)2+y2=4Factor x2-4x+4

    The rectangular form of the polar equation represents a circle with its centre at (2, 0) and a radius of 2 units.
    ::极方形的矩形表示圆,其中心为(2,0),半径为2个单位。

    This is the graph represented by the polar equation r = 4 cos θ for 0 θ 2 π or the rectangular form ( x 2 ) 2 + y 2 = 4.
    ::这是以 r=4cos或矩形(x-2)2+y2=4的极方方程式 r=4cos 表示的图。

    2. Write the polar equation r = 3 csc θ in rectangular form.
    ::2. 以矩形形式写出极方程式r=3csc。

    r = 3 csc θ r csc θ = 3 d i v i d e   b y csc θ r 1 csc θ = 3 r sin θ = 3 sin θ = 1 csc θ y = 3 y = r sin θ

    ::=3cscrc3divide bycscr1csc3rsin3sin1ccscy=3y=rsin

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to convert your coordinates from polar representation to the rectangular one. 
    ::早些时候,你被要求将坐标从极表转换为矩形坐标。

    You can see from the map that your position is represented in polar coordinates as ( 3 , 70 ) . Therefore, the radius is equal to 3 and the angle is equal to 70 . The rectangular coordinates of this point can be found as follows:
    ::您可以从地图上看到您的位置以极坐标表示( 3, 70 ) 。 因此, 半径等于 3, 角度等于 70 。 此点的矩形坐标如下:

    x = r cos θ y = r sin θ x = 3 cos ( 70 ) y = 3 sin ( 70 ) x = 3 ( .342 ) y = 3 ( .94 ) x 1.026 y 2.82

    ::x=rcosy=rsinx=3cos(70)y=3sin(70)xx=3(3.442)y=3(94×1.026y2.82)

    Example 2
    ::例2

    Write the polar equation r = 6 cos θ in rectangular form.
    ::以矩形形式写入极方方程式 r= 6cos。

    r = 6 cos θ r 2 = 6 r cos θ x 2 + y 2 = 6 x x 2 6 x + y 2 = 0 x 2 6 x + 9 + y 2 = 9 ( x 3 ) 2 + y 2 = 9

    ::r=6cosr2=6rcosx2+y2=6xx2-6x+y2=0x2-6x+9+y2=9(x-3)2+y2=9

    Example 3
    ::例3

    Write the polar equation r sin θ = 3 in rectangular form.
    ::以矩形形式写入极方方程 rsin3 。

    r sin θ = 3 y = 3

    ::

    Example 4
    ::例4

    Write the polar equation r = 2 sin θ in rectangular form.
    ::以矩形形式写入极方方程式 r=2sin。

    r = 2 sin θ r 2 = 2 r sin θ x 2 + y 2 = 2 y y 2 2 y = x 2 y 2 2 y + 1 = x 2 + 1 ( y 1 ) 2 = x 2 + 1 x 2 + ( y 1 ) 2 = 1

    ::r2=2rsinx2+y2=2yy2 -2y2 -2yx2y2-2-2y+1x2+1(y- 1)2x2+1(y- 1)2x2+1x2+1x2+(y- 1)2=1

    Review
    ::回顾

    Given the following polar coordinates, find the corresponding rectangular coordinates of the points.
    ::根据以下极坐标,找到相应的各点的矩形坐标。

    1. ( 2 , π 6 )
    2. ( 4 , 2 π 3 )
    3. ( 5 , π 3 )
    4. ( 3 , π 4 )
    5. ( 6 , 3 π 4 )

    Write each polar equation in rectangular form.
    ::以矩形形式写下每个极方程。

    1. r = 3 sin θ
      ::r=3sin
    2. r = 2 cos θ
      ::r=2cos
    3. r = 5 csc θ
      ::r=5csc
    4. r = 3 sec θ
      ::r=3sec
    5. r = 6 cos θ
      ::r=6cos
    6. r = 8 sin θ
      ::r=8sin____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    7. r = 2 csc θ
      ::r=2csc
    8. r = 4 sec θ
      ::r=4sec
    9. r = 3 cos θ
      ::r=3cos
    10. r = 5 sin θ
      ::r=5sin

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。