6.4 极对矩形转换
Section outline
-
You are hiking one day with friends. When you stop to examine your map, you mark your position on a polar plot with your campsite at the origin, like this
::有一天你和朋友一起徒步远足。 当你停下来检查你的地图时, 你用你的营地, 像这样的原地, 标记你在一个极地阴谋上的位置。You decide to plot your position on a different map, which has a rectangular grid on it instead of a polar plot. Can you convert your coordinates from the polar representation to the rectangular one?
::您决定在不同地图上绘制您的位置, 该地图上有一个矩形网格, 而不是一个极图。 您能否将您的坐标从极代表面转换为矩形代表面 ?Converting Polar Coordinates to Rectangular Coordinates
::将极坐标转换为矩形坐标Just as and are usually used to designate the rectangular coordinates of a point, and are usually used to designate the of the point. is the distance of the point to the origin. is the angle that the line from the origin to the point makes with the positive axis.
::正如x和y通常用于指定点的矩形坐标一样,r 和 通常用于指定点的矩形坐标。 r 是点与源的距离。 是线从源到点与正x- 轴之间的角。The diagram below shows both polar and Cartesian coordinates applied to a point . By applying trigonometry, we can obtain equations that will show the relationship between polar coordinates and the rectangular coordinates
::下图显示适用于P点的极坐标和笛卡尔坐标。 通过采用三角测量法,我们可以得到方程,以显示极坐标(r, )和矩形坐标(x,y)之间的关系。The point has the polar coordinates and the rectangular coordinates .
::P点有极地坐标(r,)和矩形坐标(x,y)。Therefore
::因此,
::x=rcosr2=x2+y2y=rsintanyxThese equations, also known as coordinate conversion equations, will enable you to convert from polar to rectangular form .
::这些方程式,也称为坐标转换方程式, 将使您能够从极向矩形转换。Converting Coordinates
::转换坐标Given the following polar coordinates, find the corresponding rectangular coordinates of the points:
::根据以下极坐标,找到各点对应的矩形坐标:W(4)-200)、H(4)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________For and
::W(4,-200),r=4 和200
::x=rcosy=rsinx=4cos(-200)y=4sin(--200)x=4(--.9396y=4(-3420x_3.76y)1.37)The rectangular coordinates of are approximately .
::W的矩形坐标约为(-3.76,1.37)。For and
::H(4,XIII3),r=4和3
::x=rsinx=4cos3y=4sin3y=4x4(12)y=4(32)x=2y=23The rectangular coordinates of are or approximately .
::H的矩形坐标为(2,23)或大约(2,3.46)。Converting Equations
::转换等号1. In addition to writing polar coordinates in rectangular form, the coordinate conversion equations can also be used to write polar equations in rectangular form.
::1. 除了以矩形形式写出极坐标外,坐标转换方程式还可以用于以矩形形式写出极方程式。Write the polar equation in rectangular form.
::以矩形形式写入极方程式 r=4cos。
::r= 4cosr2= 4rcos □ 以 r.x2+y2= 4xr2=x2+y2 和 x=rcos= rcos 和 x= rcos= rtip 双侧均匀度为 r.x2+y2= 4xr2=x2+y2= x2+y2The equation is now in rectangular form. The and have been replaced. However, the equation, as it appears, does not model any shape with which we are familiar. Therefore, we must continue with the conversion.
::方程现已以矩形形式出现。 r2 和 已被替换。 但是, 方程似乎并不模拟我们熟悉的任何形状。 因此, 我们必须继续转换 。
::x2-4x+y2=0x2-4x+4+y2=4 x2-4x.(x-2)2+y2=4Factor x2-4x+4The rectangular form of the polar equation represents a circle with its centre at (2, 0) and a radius of 2 units.
::极方形的矩形表示圆,其中心为(2,0),半径为2个单位。This is the graph represented by the polar equation for or the rectangular form
::这是以 r=4cos或矩形(x-2)2+y2=4的极方方程式 r=4cos 表示的图。2. Write the polar equation in rectangular form.
::2. 以矩形形式写出极方程式r=3csc。
::=3cscrc3divide bycscr1csc3rsin3sin1ccscy=3y=rsinExamples
::实例Example 1
::例1Earlier, you were asked to convert your coordinates from polar representation to the rectangular one.
::早些时候,你被要求将坐标从极表转换为矩形坐标。You can see from the map that your position is represented in polar coordinates as . Therefore, the radius is equal to 3 and the angle is equal to . The rectangular coordinates of this point can be found as follows:
::您可以从地图上看到您的位置以极坐标表示( 3, 70 ) 。 因此, 半径等于 3, 角度等于 70 。 此点的矩形坐标如下:
::x=rcosy=rsinx=3cos(70)y=3sin(70)xx=3(3.442)y=3(94×1.026y2.82)Example 2
::例2Write the polar equation in rectangular form.
::以矩形形式写入极方方程式 r= 6cos。
::r=6cosr2=6rcosx2+y2=6xx2-6x+y2=0x2-6x+9+y2=9(x-3)2+y2=9Example 3
::例3Write the polar equation in rectangular form.
::以矩形形式写入极方方程 rsin3 。
::Example 4
::例4Write the polar equation in rectangular form.
::以矩形形式写入极方方程式 r=2sin。
::r2=2rsinx2+y2=2yy2 -2y2 -2yx2y2-2-2y+1x2+1(y- 1)2x2+1(y- 1)2x2+1x2+1x2+(y- 1)2=1Review
::回顾Given the following polar coordinates, find the corresponding rectangular coordinates of the points.
::根据以下极坐标,找到相应的各点的矩形坐标。Write each polar equation in rectangular form.
::以矩形形式写下每个极方程。-
::r=3sin -
::r=2cos -
::r=5csc -
::r=3sec -
::r=6cos -
::r=8sin____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ -
::r=2csc -
::r=4sec -
::r=3cos -
::r=5sin
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。