Section outline

  • You are in math class one day when your teacher asks you to find 3 i . Are you able to find roots of ? 
    ::有一天,当你的老师要求你找到3i的时候,你上数学课。你能找到根吗?

    De Moivre's Theorem and nth Roots
    ::莫伊夫雷的理论和Nth根

    Other sections in this course have explored all of the basic operations of arithmetic as they apply to complex numbers in standard form and in polar form . The last discovery is that of taking roots of complex numbers in polar form. Using De Moivre’s Theorem we can develop another general rule – one for finding the n t h root of a complex number written in polar form.
    ::本课程中的其他章节探讨了所有基本的算术操作,因为它们适用于标准形式和极形式的复杂数字。 最后一个发现是以极的形式产生复杂数字。 利用德莫伊弗尔的理论,我们可以制定另一个一般规则 — — 一个用于找到以极形式书写复杂数字的nth根的规则。

    As before, let
    ::和以前一样,让我们

    z = r ( cos θ + i sin θ )
    :sadcosisin) z=r(cosisin)

    and let the
    ::并让

    n t h
    ::nnth 北

    root of
    ::根根

    z
    ::z 兹

    be
    ::be be be 的, 是

    v = s ( cos α + i sin α )
    :sadcosisin) v=(cosisin)

    . So, in general,
    ::。因此,一般而言,

    z n = v
    ::zn=v

    and
    ::和

    v n = z
    ::vn=z (n=z)

    .

     

    z n = v r ( cos θ + i sin θ ) n = s ( cos α + i sin α ) [ r ( cos θ + i sin θ ) ] 1 n = s ( cos α + i sin α ) r 1 n ( cos 1 n θ + i sin 1 n θ ) = s ( cos α + i sin α ) r 1 n ( cos θ n + i sin θ n ) = s ( cos α + i sin α )

    ::zn=vr(cosisin)n=s(cosisin)1n=s(cosisin)r1n(cos1nisin1n)r1n(cosn+isinn)=s(cosisin)

    From this derivation, we can conclude that r 1 n = s or s n = r and α = θ n . Therefore, for any integer k ( 0 , 1 , 2 , n 1 ) , v is an n t h root of z if s = r n and α = θ + 2 π k n . Therefore, the general rule for finding the n t h roots of a complex number if z = r ( cos θ + i sin θ ) is: r n ( cos θ + 2 π k n + i sin θ + 2 π k n ) .
    ::从这一推论中,我们可以得出r1n=s或 sn=r和n。 因此,对于任何整数 k( 0, 1, 2,...n-1) , v 是 z 的 nth 根, 如果 s=rn 和 2kn。 因此, 如果 z=r( cosisin) , 找到复数的 n 根的一般规则是 rn( cos2kn+isin2kn) 。

    Let's solve the following problems and  leave θ in degrees.
    ::让我们解决以下的问题 然后在度上留下

    1. Find the two square roots of 2 i .
    ::1. 找出2i的两根根根。

    Express 2 i in polar form.
    ::2号快车以极地形式出现

    r = x 2 + y 2 cos θ = 0 r = ( 0 ) 2 + ( 2 ) 2 θ = 90 r = 4 = 2

    ::r= rx2+y2cos=0r=( 0)2+(2)2=90@r=4=2

    ( 2 i ) 1 2 = 2 1 2 ( cos 90 2 + i sin 90 2 ) = 2 ( cos 45 + i sin 45 ) = 1 + i

    :sad2)(一)12=212(cos902+isin902)=2(cos45454545)=1+i

    To find the other root, add 360 to θ .
    ::要找到另一根根, 请在 __ 中添加 360 。

    ( 2 i ) 1 2 = 2 1 2 ( cos 450 2 + i sin 450 2 ) = 2 ( cos 225 + i sin 225 ) = 1 i

    :sad2)(一)12=212(cos450)2+isin450)2=2(cos225)225)1-i

    2. Express 2 2 i 3 in polar form:
    ::2. 极形式的快报-2-2-2i3:

    r = x 2 + y 2 r = ( 2 ) 2 + ( 2 3 ) 2 r = 16 = 4 θ = tan 1 ( 2 3 2 ) = 4 π 3

    ::r=x2+y2r=(-2)2+(-232r=16=4tan-1(-23-2)=43

    r n ( cos θ + 2 π k n + i sin θ + 2 π k n ) 2 2 i 3 3 = 4 3 ( cos 4 π 3 + 2 π k 3 + i sin 4 π 3 + 2 π k 3 ) k = 0 , 1 , 2

    ::rn(cos2kn+isin22kn)-2-2i33=43(cos43+2k3+isin43+2k3k3k=0,1,2)k=0,2

    z 1 = 4 3 [ cos ( 4 π 9 + 0 3 ) + i sin ( 4 π 9 + 0 3 ) ] k = 0 = 4 3 [ cos 4 π 9 + i sin 4 π 9 ] z 2 = 4 3 [ cos ( 4 π 9 + 2 π 3 ) + i sin ( 4 π 9 + 2 π 3 ) ] k = 1 = 4 3 [ cos 10 π 9 + i sin 10 π 9 ] z 3 = 4 3 [ cos ( 4 π 9 + 4 π 3 ) + i sin ( 4 π 9 + 4 π 3 ) ] k = 2 = 4 3 [ cos 16 π 9 + i sin 16 π 9 ]

    ::z1=43[cos(49+03+)+isin(49+03)]k=0=43[cos49+isin49+49]z2=43[cos(49+23)]k=1=43[49+23]k=43[Cos109+isin109+isin109]z3=43[49+43]+isin(49+43)]k=2=43[cos169+isin169]]]

    In standard form: z 1 = 0.276 + 1.563 i , z 2 = 1.492 0.543 i , z 3 = 1.216 1.02 i .
    ::标准格式:z1=0.276+1.563i,z21.492-0.543i,z3=1.216-1.02i。

    3. Calculate ( cos π 4 + i sin π 4 ) 1 / 3
    ::3. 计算(cos4+isin4)1/3

    Using DeMoivres Theorem for fractional powers, we get:
    ::使用DeMoivres定理器进行分数功率,我们得到:

    ( cos π 4 + i sin π 4 ) 1 / 3 = cos ( 1 3 × π 4 ) + i sin ( 1 3 × π 4 ) = ( cos π 12 + i sin π 12 )

    :sadcos4+isin4)1/3=cos(134)+isin(134)=(cos12+isin12)12)

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to solve  3 i .
    ::之前有人叫你去解决三号案

    Finding the two square roots of 3 i involves first converting the number to polar form:
    ::找到三一的两平方根首先需要将数字转换为极形:

    For the radius:
    ::半径 :

    r = x 2 + y 2 r = ( 0 ) 2 + ( 3 ) 2 r = 9 = 3

    ::r=x2+y2r=(0)2+(3)2r=9=3

    And the angle:
    ::角度 :

    cos θ = 0 θ = 90

    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我...

    ( 3 i ) 1 2 = 3 1 2 ( cos 90 2 + i sin 90 2 ) = 3 ( cos 45 + i sin 45 ) = 6 2 ( 1 + i )

    :sad3)(一)12=312(cos902+isin902)=3(cos45454545)=62(1+1)

    To find the other root, add 360 to θ .
    ::要找到另一根根, 请在 __ 中添加 360 。

    ( 3 i ) 1 2 = 3 1 2 ( cos 450 2 + i sin 450 2 ) = 3 ( cos 225 + i sin 225 ) = 6 2 ( 1 i )

    :sad3)(一)12=312(cos450)2+isin450)2=3(cos225)225)2=62(-1)-(i)

    Example 2
    ::例2

    Find 27 i 3 .
    ::查找273号

    a = 0   a n d   b = 27 27 i 3 = ( 0 + 27 i ) 1 3 x = 0   a n d   y = 27 Polar Form r = x 2 + y 2 θ = π 2 r = ( 0 ) 2 + ( 27 ) 2 r = 27 27 i 3 = [ 27 ( cos ( π 2 + 2 π k ) + i sin ( π 2 + 2 π k ) ) ] 1 3 for  k = 0 , 1 , 2 27 i 3 = 27 3 [ cos ( 1 3 ) ( π 2 + 2 π k ) + i sin ( 1 3 ) ( π 2 + 2 π k ) ] for  k = 0 , 1 , 2 27 i 3 = 3 ( cos π 6 + i sin π 6 ) for  k = 0 27 i 3 = 3 ( cos 5 π 6 + i sin 5 π 6 ) for  k = 1 27 i 3 = 3 ( cos 9 π 6 + i sin 9 π 6 ) for  k = 2 27 i 3 = 3 ( 3 2 + 1 2 i ) , 3 ( 3 2 + 1 2 i ) , 3 i

    ::a= 0 和 b= 2727i3= ( 0+ 277i3) = 0 和 y= y= 272727i3 = ( 0) 2+ (272r= 272727i3= [27( cos ( 2+ 2k) = k= 0, 1, 227i3= 273 [cos= ( 13) 2( 22} k) +isin ( 13) (2+2k)] k= 0, 1, 227i3= 3( cos6+isin= 6) k= 227i3= 3 (cos56+isin 56) = 127i3= 3( cos96+isin96) k= 227i3= 3( 32+12i) 3( 32+12i) 3( 32+12i) =- 3i

    Example 3
    ::例3

    Find the principal root of ( 1 + i ) 1 5 . Remember the principal root is the positive root i.e. 9 = ± 3 so the principal root is +3.
    ::查找 (1+i) 15 的主根。 记住主根是正根, 即 93, 所以主根是 +3 。

    r = x 2 + y 2 θ = tan 1 ( 1 1 ) = 2 2 Polar Form = 2 c i s π 4 r = ( 1 ) 2 + ( 1 ) 2 r = 2

    ::rr= rx2+y2+y2}11(11)=22 Pollar form=2cis_4r=(1)2+(1)2r=2

    ( 1 + i ) 1 5 = [ 2 ( cos π 4 + i sin π 4 ) ] 1 5 ( 1 + i ) 1 5 = 2 1 5 [ cos ( 1 5 ) ( π 4 ) + i sin ( 1 5 ) ( π 4 ) ] ( 1 + i ) 1 5 = 2 10 ( cos π 20 + i sin π 20 )

    :sad1+1)15=[2(cos4+isin4)]15(1+1)15=215[cos(15)(4)+isin(15)(4)](1+1)15=210(cos20+isin20)20]

    In standard form ( 1 + i ) 1 5 = ( 1.06 + 1.06 i ) and this is the principal root of ( 1 + i ) 1 5 .
    ::在标准表格(1+1)15=(1.06+1.06i)中,这是1+115的主要根。

    Example 4
    ::例4

    Find the fourth roots of 81 i .
    ::找出81i的第四根根

    81 i in polar form is:
    ::极形81i为:

    r = 0 2 + 81 2 = 81 , tan θ = 81 0 = u n d θ = π 2 81 ( cos π 2 + i sin π 2 ) [ 81 ( cos ( π 2 + 2 π k ) + i sin ( π 2 + 2 π k ) ) ] 1 4 3 ( cos ( π 2 + 2 π k 4 ) + i sin ( π 2 + 2 π k 4 ) ) 3 ( cos ( π 8 + π k 2 ) + i sin ( π 8 + π k 2 ) ) z 1 = 3 ( cos ( π 8 + 0 π 2 ) + i sin ( π 8 + 0 π 2 ) ) = 3 cos π 8 + 3 i sin π 8 = 2.77 + 1.15 i z 2 = 3 ( cos ( π 8 + π 2 ) + i sin ( π 8 + π 2 ) ) = 3 cos 5 π 8 + 3 i sin 5 π 8 = 1.15 + 2.77 i z 3 = 3 ( cos ( π 8 + 2 π 2 ) + i sin ( π 8 + 2 π 2 ) ) = 3 cos 9 π 8 + 3 i sin 9 π 8 = 2.77 1.15 i z 4 = 3 ( cos ( π 8 + 3 π 2 ) + i sin ( π 8 + 3 π 2 ) ) = 3 cos 13 π 8 + 3 i sin 13 π 8 = 1.15 2.77 i

    ::-2+2k) 143(cos()2+2+22)+西尼(2+2)3(2+24)3(2+22+24)3(2+2+22+24)2)3(2+2+22)2)3(2+2+2)2)3(2+2+2)3(2+2)3(88)810=281(82)810=281(2)8(8-8+2);8(8)8+1(15)2)3(3)+(5)8+3(5)8)8(8+3)8(5)8(15)15(15)+2(9)(2(8-8)2(8-8+2)(2(7-8)(2)(2(8)) (3(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)

    Review
    ::回顾

    Find the cube roots of each complex number. Write your answers in standard form.
    ::查找每个复数的立方根。 以标准格式写入您的答复 。

    1. 8 ( cos 2 π + i sin 2 π )
      ::8(cos222222)
    2. 3 ( cos π 4 + i sin π 4 )
      ::3(cos%4+isin%4)
    3. 2 ( cos 3 π 4 + i sin 3 π 4 )
      ::2(cos34+isin34)
    4. ( cos π 3 + i sin π 3 )
      :sadcos%3+isin%3) (cos%3+isin%3)
    5. ( 3 + 4 i )
      :sad3+4i)
    6. ( 2 + 2 i )
      :sad2+2i)

    Find the principal fifth roots of each complex number. Write your answers in standard form.
    ::查找每个复杂数字的主要五根根。 以标准格式写入您的答复 。

    1. 2 ( cos π 6 + i sin π 6 )
      ::2(cos6+isin6)
    2. 4 ( cos π 2 + i sin π 2 )
      ::4 (cos2+isin2)
    3. 32 ( cos π 4 + i sin π 4 )
      ::32(cos%4+isin%4) (cos%4+isin%4))
    4. 2 ( cos π 3 + i sin π 3 )
      ::2(cos%3+isin%3)
    5. 32 i
      ::32i 32i
    6. ( 1 + 5 i )
      :sad1+5i)
    7. Find the sixth roots of -64 and plot them on the complex plane.
      ::找出64号的第六根 把它们埋在复杂的平面上
    8. How many solutions could the equation x 6 + 64 = 0 have? Explain.
      ::方程式 x6+64=0 能有多少解决方案? 请解释 。
    9. Solve x 6 + 64 = 0 . Use your answer to #13 to help you.
      ::解析 x6+64=0。 使用您对 # 13 的回复来帮助您 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。