6.13 德莫伊夫雷的理论和nth根
Section outline
-
You are in math class one day when your teacher asks you to find . Are you able to find roots of ?
::有一天,当你的老师要求你找到3i的时候,你上数学课。你能找到根吗?De Moivre's Theorem and nth Roots
::莫伊夫雷的理论和Nth根Other sections in this course have explored all of the basic operations of arithmetic as they apply to complex numbers in standard form and in polar form . The last discovery is that of taking roots of complex numbers in polar form. Using De Moivre’s Theorem we can develop another general rule – one for finding the root of a complex number written in polar form.
::本课程中的其他章节探讨了所有基本的算术操作,因为它们适用于标准形式和极形式的复杂数字。 最后一个发现是以极的形式产生复杂数字。 利用德莫伊弗尔的理论,我们可以制定另一个一般规则 — — 一个用于找到以极形式书写复杂数字的nth根的规则。As before, let
::和以前一样,让我们
:cosisin) z=r(cosisin)
and let the
::并让
::nnth 北root of
::根根
::z 兹be
::be be be 的, 是
:cosisin) v=(cosisin)
. So, in general,
::。因此,一般而言,
::zn=vand
::和
::vn=z (n=z).
::zn=vr(cosisin)n=s(cosisin)1n=s(cosisin)r1n(cos1nisin1n)r1n(cosn+isinn)=s(cosisin)From this derivation, we can conclude that or and . Therefore, for any integer , is an root of if and . Therefore, the general rule for finding the roots of a complex number if is: .
::从这一推论中,我们可以得出r1n=s或 sn=r和n。 因此,对于任何整数 k( 0, 1, 2,...n-1) , v 是 z 的 nth 根, 如果 s=rn 和 2kn。 因此, 如果 z=r( cosisin) , 找到复数的 n 根的一般规则是 rn( cos2kn+isin2kn) 。Let's solve the following problems and leave in degrees.
::让我们解决以下的问题 然后在度上留下1. Find the two square roots of .
::1. 找出2i的两根根根。Express in polar form.
::2号快车以极地形式出现
::r= rx2+y2cos=0r=( 0)2+(2)2=90@r=4=2
:2)(一)12=212(cos902+isin902)=2(cos45454545)=1+i
To find the other root, add to .
::要找到另一根根, 请在 __ 中添加 360 。
:2)(一)12=212(cos450)2+isin450)2=2(cos225)225)1-i
2. Express in polar form:
::2. 极形式的快报-2-2-2i3:
::r=x2+y2r=(-2)2+(-232r=16=4tan-1(-23-2)=43
::rn(cos2kn+isin22kn)-2-2i33=43(cos43+2k3+isin43+2k3k3k=0,1,2)k=0,2
::z1=43[cos(49+03+)+isin(49+03)]k=0=43[cos49+isin49+49]z2=43[cos(49+23)]k=1=43[49+23]k=43[Cos109+isin109+isin109]z3=43[49+43]+isin(49+43)]k=2=43[cos169+isin169]]]In standard form: .
::标准格式:z1=0.276+1.563i,z21.492-0.543i,z3=1.216-1.02i。3. Calculate
::3. 计算(cos4+isin4)1/3Using DeMoivres Theorem for fractional powers, we get:
::使用DeMoivres定理器进行分数功率,我们得到:
:cos4+isin4)1/3=cos(134)+isin(134)=(cos12+isin12)12)
Examples
::实例Example 1
::例1Earlier, you were asked to solve .
::之前有人叫你去解决三号案Finding the two square roots of involves first converting the number to polar form:
::找到三一的两平方根首先需要将数字转换为极形:For the radius:
::半径 :
::r=x2+y2r=(0)2+(3)2r=9=3And the angle:
::角度 :
::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我...
:3)(一)12=312(cos902+isin902)=3(cos45454545)=62(1+1)
To find the other root, add to .
::要找到另一根根, 请在 __ 中添加 360 。
:3)(一)12=312(cos450)2+isin450)2=3(cos225)225)2=62(-1)-(i)
Example 2
::例2Find .
::查找273号
::a= 0 和 b= 2727i3= ( 0+ 277i3) = 0 和 y= y= 272727i3 = ( 0) 2+ (272r= 272727i3= [27( cos ( 2+ 2k) = k= 0, 1, 227i3= 273 [cos= ( 13) 2( 22} k) +isin ( 13) (2+2k)] k= 0, 1, 227i3= 3( cos6+isin= 6) k= 227i3= 3 (cos56+isin 56) = 127i3= 3( cos96+isin96) k= 227i3= 3( 32+12i) 3( 32+12i) 3( 32+12i) =- 3iExample 3
::例3Find the principal root of . Remember the principal root is the positive root i.e. so the principal root is +3.
::查找 (1+i) 15 的主根。 记住主根是正根, 即 93, 所以主根是 +3 。
::rr= rx2+y2+y2}11(11)=22 Pollar form=2cis_4r=(1)2+(1)2r=2
:1+1)15=[2(cos4+isin4)]15(1+1)15=215[cos(15)(4)+isin(15)(4)](1+1)15=210(cos20+isin20)20]
In standard form and this is the principal root of .
::在标准表格(1+1)15=(1.06+1.06i)中,这是1+115的主要根。Example 4
::例4Find the fourth roots of .
::找出81i的第四根根in polar form is:
::极形81i为:
::-2+2k) 143(cos()2+2+22)+西尼(2+2)3(2+24)3(2+22+24)3(2+2+22+24)2)3(2+2+22)2)3(2+2+2)2)3(2+2+2)3(2+2)3(88)810=281(82)810=281(2)8(8-8+2);8(8)8+1(15)2)3(3)+(5)8+3(5)8)8(8+3)8(5)8(15)15(15)+2(9)(2(8-8)2(8-8+2)(2(7-8)(2)(2(8)) (3(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)(8)Review
::回顾Find the cube roots of each complex number. Write your answers in standard form.
::查找每个复数的立方根。 以标准格式写入您的答复 。-
::8(cos222222) -
::3(cos%4+isin%4) -
::2(cos34+isin34) -
:cos%3+isin%3) (cos%3+isin%3)
-
:3+4i)
-
:2+2i)
Find the principal fifth roots of each complex number. Write your answers in standard form.
::查找每个复杂数字的主要五根根。 以标准格式写入您的答复 。-
::2(cos6+isin6) -
::4 (cos2+isin2) -
::32(cos%4+isin%4) (cos%4+isin%4)) -
::2(cos%3+isin%3) -
::32i 32i -
:1+5i)
-
Find the sixth roots of -64 and plot them on the complex plane.
::找出64号的第六根 把它们埋在复杂的平面上 -
How many solutions could the equation
have? Explain.
::方程式 x6+64=0 能有多少解决方案? 请解释 。 -
Solve
. Use your answer to #13 to help you.
::解析 x6+64=0。 使用您对 # 13 的回复来帮助您 。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -