章节大纲

  • The area of a  parallelogram is given by the equation 3 x 2 + 9 x 5 = 0 , where x is the length of the base. What is the length of this base?
    ::3x2+9x-5=0 方程式给出了平行图区域, x 是基数的长度。 此基数的长度是多少 ?

    Completing the Square
    ::完成广场

    When there is a number in front of x 2 , it will make a little more complicated. 
    ::当 x2 前面有一个数字时, 它会变得更复杂一些 。

    Let's determine the number c that completes the square of 2 x 2 8 x + c .
    ::让我们来决定 完成 2x2 -8x+c 平方的 c 数字 。

    Previously , we just added ( b 2 ) 2 , but that was when a = 1 . Now that a 1 , we have to take the value of a into consideration. Let's pull out the GCF of 2 and 8 first.
    ::之前,我们刚刚添加了(b2)2,但当时A=1,现在A=1,我们必须考虑一个价值。让我们首先拿出2和8的绿色气候基金。

    2 ( x 2 4 x )
    ::2(x2 - 4x)

    Now, there is no number in front of x 2 .
    ::现在, x2 前面没有数字。

    ( b 2 ) 2 = ( 4 2 ) 2 = 4 .
    :伤心b2)2=(42)2=4。

    Add this number inside the parenthesis and distribute the 2.
    ::在括号中添加此数字, 并分发 2 。

    2 ( x 2 4 x + 4 ) = 2 x 2 4 x + 8
    ::2(x2-4x+4)=2x2-4x+8

    So, c = 8 .
    ::所以,c=8。 。 。

    Solve the following by completing the square.
    ::完成广场,解决以下问题。

    3 x 2 9 x + 11 = 0

    ::3x2-9x+11=0

    Step 1: Write the polynomial so that x 2 and x are on the left side of the equation and the constants on the right.
    ::步骤 1: 写入多数值, 使 x2 和 x 位于方程的左侧, 且位于右侧的常数 。

    3 x 2 9 x = 11

    ::3x2-9x11

    Step 2: Pull out a from everything on the left side. Even if b is not divisible by a , the coefficient of x 2 needs to be 1 in order to complete the square.
    ::第2步:从左侧的所有东西中抽出一个。即使 b 无法被 a 变异, 但为填平方形, x2 的系数必须为 1 。

    3 ( x 2 3 x + _ ) = 11

    ::3(x2 - 3x) 11

    Step 3: Now, complete the square. Determine what number would make a perfect square trinomial .
    ::第3步:现在,完成方形。决定哪个数字可以使一个完美的方形三角形。

    To do this, divide the x term by 2 and square that number, or ( b 2 ) 2 .
    ::为此,将x-期除以2和该数字的正方形,或(b2)2。

    ( b 2 ) 2 = ( 3 2 ) 2 = 9 4

    :伤心b2)2=(32)2=94

    Step 4: Add this number to the interior of the parenthesis on the left side. On the right side, you will need to add a ( b 2 ) 2 to keep the equation balanced.
    ::第4步:在左侧括号的内部添加此数字。 在右侧, 您需要添加 a(b2) 2 来保持方程平衡 。

    3 ( x 2 3 x + 9 4 ) = 11 + 27 4

    ::3(x2-3x+94)11+274

    Step 5: Factor the left side and simplify the right.
    ::第5步:以左侧为因子,简化右侧。

    3 ( x 3 2 ) 2 = 17 4

    ::3(x-32)2174

    Step 6: Solve by using square roots.
    ::步骤6:用平方根解决。

    ( x 3 2 ) 2 = 17 12 x 3 2 = ± i 17 2 3 3 3 x = 3 2 ± 51 6 i

    :伤心x-32)%1712x-32i1723=33x=32×516i

    Be careful with the addition of Step 2 and the changes made to Step 4. A very common mistake is to add ( b 2 ) 2 to both sides, without multiplying by a for the right side.
    ::当心增加第2步和修改第4步,一个非常常见的错误是向双方增加(b2)2,而不为右方乘以乘法。

    Solve the following by completing the square.
    ::完成广场,解决以下问题。

    4 x 2 + 7 x 18 = 0

    ::4x2+7x-18=0

    Let’s follow the steps from problem #1 above.
    ::让我们从上面问题1的步子跟上。

    Step 1: Write the polynomial so that x 2 and x are on the left side of the equation and the constants on the right.
    ::步骤 1: 写入多数值, 使 x2 和 x 位于方程的左侧, 且位于右侧的常数 。

    4 x 2 7 x = 18

    ::4x2-7x=18

    Step 2: Pull out a from everything on the left side.
    ::步骤2:从左侧的一切中抽出一个。

    4 ( x 2 + 7 4 x + _ ) = 18

    ::4( x2+74x) = 18

    Step 3: Now, complete the square. Find ( b 2 ) 2 .
    ::第三步:现在,完成方形。查找 (b2) 2。

    ( b 2 ) 2 = ( 7 8 ) 2 = 49 64

    :伤心b2)2=(782=4964)

    Step 4: Add this number to the interior of the parenthesis on the left side. On the right side, you will need to add a ( b 2 ) 2 to keep the equation balanced.
    ::第4步:在左侧括号的内部添加此数字。 在右侧, 您需要添加 a(b2) 2 来保持方程平衡 。

    4 ( x 2 + 7 4 x + 49 64 ) = 18 + 49 16

    ::4 (x2+74x+4964)=18+4916

    Step 5: Factor the left side and simplify the right.
    ::第5步:以左侧为因子,简化右侧。

    4 ( x + 7 8 ) 2 = 337 16

    ::4 (x+782) = 33716

    Step 6: Solve by using square roots.
    ::步骤6:用平方根解决。

    ( x + 7 8 ) 2 = 337 64 x + 7 8 = ± 337 8 x = 7 8 ± 337 8

    :伤心x+782=33764x+783378x_78}(x+782=33764x+78}(x+782=33764x+78})

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the length of the base of the parallelogram. 
    ::早些时候,有人要求你找到平行图的底部长度。

    We can't factor 3 x 2 + 9 x 5 = 0 , so let's follow the step-by-step process we learned in this lesson.
    ::我们不能乘以 3x2+9x-5=0, 所以让我们遵循我们从这个教训中 学到的一步步过程。

    Step 1: Write the polynomial so that x 2 and x are on the left side of the equation and the constants on the right.
    ::步骤 1: 写入多数值, 使 x2 和 x 位于方程的左侧, 且位于右侧的常数 。

    3 x 2 + 9 x = 5

    ::3x2+9x=5

    Step 2: Pull out a from everything on the left side.
    ::步骤2:从左侧的一切中抽出一个。

    3 ( x 2 + 3 x + _ ) = 5

    ::3(x2+3x)=5

    Step 3: Now, complete the square. Find ( b 2 ) 2 .
    ::第三步:现在,完成方形。查找 (b2) 2。

    ( b 2 ) 2 = ( 3 2 ) 2 = 9 4

    :伤心b2)2=(32)2=94

    Step 4: Add this number to the interior of the parenthesis on the left side. On the right side, you will need to add a ( b 2 ) 2 to keep the equation balanced.
    ::第4步:在左侧括号的内部添加此数字。 在右侧, 您需要添加 a(b2) 2 来保持方程平衡 。

    3 ( x 2 + 3 x + 9 4 ) = 5 + 27 4

    ::3(x2+3x+94=5+274)

    Step 5: Factor the left side and simplify the right.
    ::第5步:以左侧为因子,简化右侧。

    3 ( x + 3 2 ) 2 = 47 4

    ::3(x+322)=474

    Step 6: Solve by using square roots.
    ::步骤6:用平方根解决。

    ( x + 3 2 ) 2 = 47 12 x + 3 2 = ± 47 12 x = 3 2 ± 47 2 3 x = 3 2 ± 141 6

    :伤心x+32)2=4712x+324712x324723x321416

    However, because x is the length of the parallelogram's base, it must have a positive value. Only x = 3 2 + 141 6 results in a positive value, so the length of the base is x = 3 2 + 141 6 .
    ::然而,由于 x 是平行图基数的长度, 它必须有一个正值 。 只有 x32+1416 得出正值, 所以基数的长度是 x32+1416 。

    Example 2
    ::例2

    Solve the following quadratic equation by completing the square:  5 x 2 + 29 x 6 = 0 .
    ::通过完成方形( 5x2+29x-6=0) 解决以下二次方程。

    5 x 2 + 29 x 6 = 0 5 ( x 2 + 29 5 x ) = 6 5 ( x 2 + 29 5 x + 841 100 ) = 6 + 841 20 5 ( x + 29 10 ) 2 = 961 20 ( x + 29 10 ) 2 = 961 100 x + 29 10 = ± 31 10 x = 29 10 ± 31 10 x = 6 , 1 5

    ::5x2+29x-6=05(x2+295x)=65(x2+295x+841100)=6+841205(x+291010)2=96120(x+2910)2=961100x+2910=961100x+2910=3110x_2910x_2910_3110x_6,15

    Example 3
    ::例3

    Solve the following quadratic by completing the square:  8 x 2 32 x + 4 = 0 .
    ::通过完成正方形( 8x2- 32x+4=0) 解决以下二次方形。

    8 x 2 32 x + 4 = 0 8 ( x 2 4 x ) = 4 8 ( x 2 4 x + 4 ) = 4 + 32 8 ( x 2 ) 2 = 28 ( x 2 ) 2 = 7 2 x 2 = ± 7 2 2 2 x = 2 ± 14 2

    ::8x2 - 32x+4=08(x2 - 4x)\48(x2 - 4x+4)\}4+328(x-2)2=28(x-2)2=28(x-2)2=72x-272-22x=2142

    Review
    ::回顾

    Solve the quadratic equations by completing the square.
    ::通过完成广场来解决二次方程。

    1. 6 x 2 12 x 7 = 0
      ::6x2-12x-7=0
    2. 4 x 2 + 24 x 100 = 0
      ::-4x2+24x-100=0
    3. 5 x 2 30 x + 55 = 0
      ::5x2-30x+55=0
    4. 2 x 2 x 6 = 0
      ::2x2-x-6=0
    5. 1 2 x 2 + 7 x + 8 = 0
      ::12x2+7x+8=0
    6. 3 x 2 + 4 x + 15 = 0
      ::- 3x2+4x+15=0

    Solve the following equations by factoring, using square roots, or completing the square.
    ::通过保理、使用平方根或完成方块来解决以下方程式。

    1. 4 x 2 4 x 8 = 0
      ::4x2-4x-8=0
    2. 2 x 2 + 9 x + 7 = 0
      ::2x2+9x+7=0
    3. 5 ( x + 4 ) 2 19 = 26
      ::-5(x+4)2-19=26
    4. 3 x 2 + 30 x 5 = 0
      ::3x2+30x-5=0
    5. 9 x 2 15 x 6 = 0
      ::9x2--15x-6=0
    6. 10 x 2 + 40 x + 88 = 0
      ::10x2+40x+88=0

    Problems 13-15 build off of each other.
    ::13-15问题相互交织。

    1. Challenge Complete the square for a x 2 + b x + c = 0 . Follow the steps outlined in this lesson. Your final answer should be in terms of a , b , and c .
      ::挑战方块为x2+bx+c=0。 遵循本课中概述的步骤。 您的最后答案应该是 a、 b 和 c 。
    2. For the equation 8 x 2 + 6 x 5 = 0 , use the formula you found in #13 to solve for x .
      ::方程式 8x2+6x- 5=0 使用在# 13 中找到的公式解析 x。
    3. Is the equation in #14 factorable? If so, factor and solve it.
      ::#14 中的方程式是可乘的吗? 如果是的话, 系数并解决它 。
    4. Error Analysis Examine the worked out problem below. 
      ::检查以下已解决的问题。

    4 x 2 48 x + 11 = 0 4 ( x 2 12 x + _ ) = 11 4 ( x 2 12 x + 36 ) = 11 + 36 4 ( x 6 ) 2 = 25 ( x 6 ) 2 = 25 4 x 6 = ± 5 2 x = 6 ± 5 2 17 2 , 7 2

    ::4x2 - 48x+11=04(x2 - 12x) 114(x2 - 12x+36) 11+364(x-6) 2=25(x-6) 2=254x6=254x6*5x=6*52x=652172,72

    Plug the answers into the original equation to see if they work. If not, find the error and correct it.
    ::将答案插入原始方程以查看是否有效。 否则, 找到错误并纠正错误 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。