Section outline

  • Miguel says that the expression 2 5 2 4 2 2 equals 2 10 .
    ::Miguel说252422的表达方式等于210。

    Alise says that it is equal to 2 7 .
    ::Alise说,它等于27。

    Carlos says that because the exponents of the terms are different, the expression can't be simplified.
    ::Carlos说,因为术语的出处不同, 表达方式无法简化。

    Which one of them is correct? 
    ::哪一个是正确的?

    Product and Quotient Properties of Exponents
    ::指数值的产品和引号属性

    To review, the power (or exponent) of a number is the little number in the superscript. The number that is being raised to the power is called the base . The exponent indicates how many times the base is multiplied by itself.
    ::要审查,一个数字的功率(或表率)是上标中的小数。 向该功率提出的数字称为基数。 该表率表示基数是多少倍。

    lesson content

    There are several properties of exponents. We will investigate two in this concept.
    ::引言者有几个属性。我们将在这个概念中调查两个属性。

    Let's expand and solve 5 6 .
    ::让我们扩大和解决56。

      5 6 means 5 times itself six times.
    ::56意味着5乘以6次

    5 6 = 5 5 5 5 5 5 = 15 , 625

    Product Property
    ::产品产权

    Step 1: Expand 3 4 3 5 .
    ::第1步:扩大3435。

    3 3 3 3 3 4 3 3 3 3 3 3 5

    Step 2: Rewrite this expansion as one power of three.
    ::第2步:将这一扩展重写为三分之一的功率。

    3 9

    Step 3: What is the sum of the exponents?
    ::第3步:出处的总和是多少?

    4 + 5 = 9

    Step 4: Fill in the blank: a m a n = a +
    ::第4步:填写空白: aman=a________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    a m a n = a m + n
    ::AMan=am+n

    Rather than expand the exponents every time or find the powers separately, we can use this property to simplify the product of two exponents with the same base.
    ::与其每次扩大指数或单独找到权力,不如使用这一财产来简化两个指数的产物,两个指数的基础相同。

    Let's simplify the following expressions using the Product Property above.
    ::让我们使用上述产品属性简化以下表达式。

    1. x 3 x 8
      ::x3x8

    x 3 x 8 = x 3 + 8 = x 11
    ::x3x8=x3+8=x11

    1. x y 2 x 2 y 9
      ::xy2x2y9

    If a number does not have an exponent, you may assume the exponent is 1. Reorganize this expression so the x ’s are together and y ’s are together.
    ::如果一个数字没有前言,你可以假定前言为 1。 重新组织这个表达式, 使 x 在一起, y 在一起 。

    x y 2 x 2 y 9 = x 1 x 2 y 2 y 9 = x 1 + 2 y 2 + 9 = x 3 y 11


    ::xy2x2y9 = x1x2x2222Y2}=x1+2y2+9=x3y11

    Quotient Property
    ::引号属性

    Step 1: Expand 2 8 ÷ 2 3 . Also, rewrite this as a fraction .
    ::第一步 扩大 28\\\ 23。 另外, 重写此部分 。

    2 2 2 2 2 2 2 2 2 2 2

    Step 2: Cancel out the common factors and write the answer one power of 2.
    ::步骤2:取消共同因素,将答案写成二分之一的回答。

    2 2 2 2 2 2 2 2 2 2 2 = 2 5

    Step 3: What is the difference of the exponents?
    ::步骤3:出纳者有什么区别?

    8 3 = 5

    Step 4: Fill in the blank: a m a n = a
    ::第4步:填写空白:aman=a___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    a m a n = a m n
    ::aman=am-n (aman=am-n)

    Simplify the expression using the Quotient Property above.
    ::使用以上引号属性简化表达式。

    5 9 5 7

    5 9 5 7 = 5 9 7 = 5 2 = 25

    Simplify the expression using the Quotient Property above.
    ::使用以上引号属性简化表达式。

    x 4 x 2


    ::x4x2

    x 4 x 2 = x 4 2 = x 2


    ::x4x2=x4-2=x2

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find which student is correct.
    ::早些时候,有人要求你找出哪个学生是正确的。

    Using the Product Property and then the Quotient Property, the expression can be simplified.
    ::使用产品属性,然后使用引号属性,该表达式可以简化。

    2 5 2 4 2 2 = 2 9 2 2 = 2 7

    Therefore , Alise is correct.
    ::因此,Alise是对的。

    Example 2
    ::例2

    Simplify the expression. Evaluate any numerical answers.
    ::简化表达式。 评估任何数字答案 。

    7 7 2

    7 7 2 = 7 1 + 2 = 7 3 = 343

    Example 3
    ::例3

    Simplify the expression. Evaluate any numerical answers.
    ::简化表达式。 评估任何数字答案 。

    3 7 3 3

    3 7 3 3 = 3 7 3 = 3 4 = 81

    Example 4
    ::例4

    Simplify the expression. Evaluate any numerical answers.
    ::简化表达式。 评估任何数字答案 。

    16 x 4 y 5 4 x 2 y 2
    ::16x4y54x2y2

    16 x 4 y 5 4 x 2 y 2 = 4 x 4 2 y 5 3 = 4 x 2 y 2
    ::16x4y54x2y2=4x4--2y5-3=4x2y2

    Review
    ::回顾

    Expand the following numbers and evaluate.
    ::扩大以下数字并进行评估 。

    1. 2 6
    2. 10 3
    3. ( 3 ) 5
    4. ( 0.25 ) 4

    Simplify the following expressions. Evaluate any numerical answers.
    ::简化以下表达式。评价任何数字答案。

    1. 4 2 4 7
    2. 6 6 3 6 2
    3. 8 3 8
    4. 2 4 3 5 2 3 2
    5. b 6 b 3
      ::b6b3
    6. 5 2 x 4 x 9
      ::52x4xx9
    7. y 12 y 5
      ::y12y5
    8. a 8 b 6 b a 4
      ::a 8b6ba4
    9. 3 7 x 6 3 3 x 3
      ::37x633x3
    10. d 5 f 3 d 9 f 7
      ::d5f3d9f7 d5f3d9f7
    11. 2 8 m 18 n 14 2 5 m 11 n 4
      ::28m18n1425m11n4
    12. 9 4 p 5 q 8 9 2 p q 2
      ::94p5q892pq2

    Investigation Evaluate the powers of negative numbers.
    ::调查评估负数的力量。

    1. Find:
      1. ( 2 ) 1
      2. ( 2 ) 2
      3. ( 2 ) 3
      4. ( 2 ) 4
      5. ( 2 ) 5
      6. ( 2 ) 6

      ::查找sad-2)1(-2)2(-2)3(-2)4(-2)5(-2)6
    2. Make a conjecture about even vs. odd powers with negative numbers.
      ::想象一下,即使与负数的奇异力量比起来, 也有负数的奇异力量。
    3. Is ( 2 ) 4 different from 2 4 ? Why or why not?
      :sad-2)4 与-24 不同吗?为什么或为什么没有?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。