6.1 指数的产品和引号属性
Section outline
-
Miguel says that the expression 2 5 ⋅ 2 4 2 2 equals 2 10 .
::Miguel说252422的表达方式等于210。Alise says that it is equal to 2 7 .
::Alise说,它等于27。Carlos says that because the exponents of the terms are different, the expression can't be simplified.
::Carlos说,因为术语的出处不同, 表达方式无法简化。Which one of them is correct?
::哪一个是正确的?Product and Quotient Properties of Exponents
::指数值的产品和引号属性To review, the power (or exponent) of a number is the little number in the superscript. The number that is being raised to the power is called the base . The exponent indicates how many times the base is multiplied by itself.
::要审查,一个数字的功率(或表率)是上标中的小数。 向该功率提出的数字称为基数。 该表率表示基数是多少倍。There are several properties of exponents. We will investigate two in this concept.
::引言者有几个属性。我们将在这个概念中调查两个属性。Let's expand and solve 5 6 .
::让我们扩大和解决56。5 6 means 5 times itself six times.
::56意味着5乘以6次5 6 = 5 ⋅ 5 ⋅ 5 ⋅ 5 ⋅ 5 ⋅ 5 = 15 , 625
Product Property
::产品产权Step 1: Expand 3 4 ⋅ 3 5 .
::第1步:扩大3435。3 ⋅ 3 ⋅ 3 ⋅ 3 ⏟ 3 4 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 3 ⋅ 3 ⏟ 3 5
Step 2: Rewrite this expansion as one power of three.
::第2步:将这一扩展重写为三分之一的功率。3 9
Step 3: What is the sum of the exponents?
::第3步:出处的总和是多少?4 + 5 = 9
Step 4: Fill in the blank: a m ⋅ a n = a − + −
::第4步:填写空白: aman=a________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________a m ⋅ a n = a m + n
::AMan=am+nRather than expand the exponents every time or find the powers separately, we can use this property to simplify the product of two exponents with the same base.
::与其每次扩大指数或单独找到权力,不如使用这一财产来简化两个指数的产物,两个指数的基础相同。Let's simplify the following expressions using the Product Property above.
::让我们使用上述产品属性简化以下表达式。-
x
3
⋅
x
8
::x3x8
x 3 ⋅ x 8 = x 3 + 8 = x 11
::x3x8=x3+8=x11-
x
y
2
x
2
y
9
::xy2x2y9
If a number does not have an exponent, you may assume the exponent is 1. Reorganize this expression so the x ’s are together and y ’s are together.
::如果一个数字没有前言,你可以假定前言为 1。 重新组织这个表达式, 使 x 在一起, y 在一起 。x y 2 x 2 y 9 = x 1 ⋅ x 2 ⋅ y 2 ⋅ y 9 = x 1 + 2 ⋅ y 2 + 9 = x 3 y 11
::xy2x2y9 = x1x2x2222Y2}=x1+2y2+9=x3y11Quotient Property
::引号属性Step 1: Expand 2 8 ÷ 2 3 . Also, rewrite this as a fraction .
::第一步 扩大 28\\\ 23。 另外, 重写此部分 。2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 2 ⋅ 2 ⋅ 2
Step 2: Cancel out the common factors and write the answer one power of 2.
::步骤2:取消共同因素,将答案写成二分之一的回答。2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 2 ⋅ 2 ⋅ 2 = 2 5
Step 3: What is the difference of the exponents?
::步骤3:出纳者有什么区别?8 − 3 = 5
Step 4: Fill in the blank: a m a n = a − − −
::第4步:填写空白:aman=a___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________a m a n = a m − n
::aman=am-n (aman=am-n)Simplify the expression using the Quotient Property above.
::使用以上引号属性简化表达式。5 9 5 7
5 9 5 7 = 5 9 − 7 = 5 2 = 25
Simplify the expression using the Quotient Property above.
::使用以上引号属性简化表达式。x 4 x 2
::x4x2x 4 x 2 = x 4 − 2 = x 2
::x4x2=x4-2=x2Examples
::实例Example 1
::例1Earlier, you were asked to find which student is correct.
::早些时候,有人要求你找出哪个学生是正确的。Using the Product Property and then the Quotient Property, the expression can be simplified.
::使用产品属性,然后使用引号属性,该表达式可以简化。2 5 ⋅ 2 4 2 2 = 2 9 2 2 = 2 7
Therefore , Alise is correct.
::因此,Alise是对的。Example 2
::例2Simplify the expression. Evaluate any numerical answers.
::简化表达式。 评估任何数字答案 。7 ⋅ 7 2
7 ⋅ 7 2 = 7 1 + 2 = 7 3 = 343
Example 3
::例3Simplify the expression. Evaluate any numerical answers.
::简化表达式。 评估任何数字答案 。3 7 3 3
3 7 3 3 = 3 7 − 3 = 3 4 = 81
Example 4
::例4Simplify the expression. Evaluate any numerical answers.
::简化表达式。 评估任何数字答案 。16 x 4 y 5 4 x 2 y 2
::16x4y54x2y216 x 4 y 5 4 x 2 y 2 = 4 x 4 − 2 y 5 − 3 = 4 x 2 y 2
::16x4y54x2y2=4x4--2y5-3=4x2y2Review
::回顾Expand the following numbers and evaluate.
::扩大以下数字并进行评估 。- 2 6
- 10 3
- ( − 3 ) 5
- ( 0.25 ) 4
Simplify the following expressions. Evaluate any numerical answers.
::简化以下表达式。评价任何数字答案。- 4 2 ⋅ 4 7
- 6 ⋅ 6 3 ⋅ 6 2
- 8 3 8
- 2 4 ⋅ 3 5 2 ⋅ 3 2
-
b
6
⋅
b
3
::b6b3 -
5
2
x
4
⋅
x
9
::52x4xx9 -
y
12
y
5
::y12y5 -
a
8
⋅
b
6
b
⋅
a
4
::a 8b6ba4 -
3
7
x
6
3
3
x
3
::37x633x3 -
d
5
f
3
d
9
f
7
::d5f3d9f7 d5f3d9f7 -
2
8
m
18
n
14
2
5
m
11
n
4
::28m18n1425m11n4 -
9
4
p
5
q
8
9
2
p
q
2
::94p5q892pq2
Investigation Evaluate the powers of negative numbers.
::调查评估负数的力量。-
Find:
- ( − 2 ) 1
- ( − 2 ) 2
- ( − 2 ) 3
- ( − 2 ) 4
- ( − 2 ) 5
- ( − 2 ) 6
::查找-2)1(-2)2(-2)3(-2)4(-2)5(-2)6
-
Make a conjecture about even vs. odd powers with negative numbers.
::想象一下,即使与负数的奇异力量比起来, 也有负数的奇异力量。 -
Is
(
−
2
)
4
different from
−
2
4
? Why or why not?
:-2)4 与-24 不同吗?为什么或为什么没有?
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
x
3
⋅
x
8