Section outline

  • There are 1,000 bacteria present in a culture. When the culture is treated with an antibiotic, the bacteria count is halved every 4 hours. How many bacteria remained 24 hours later?
    ::文化中存在1000种细菌。当文化被用抗生素处理时,细菌数每4小时减半。24小时后还剩下多少细菌?

    Power Properties of Exponents
    ::指数的功率属性

    The last set of properties to explore are the power properties. Let’s investigate what happens when a power is raised to another power.
    ::最后一组要探索的属性是功率属性。让我们来调查当一个权力被提升到另一个权力时会发生什么。

    Power of a Power Property
    ::权力财产权

    Step 1: Rewrite ( 2 3 ) 5 as 2 3 five times.
    ::第1步:重写(23)5为23次5次。

    ( 2 3 ) 5 = 2 3 2 3 2 3 2 3 2 3

    Step 2: Expand each 2 3 . How many 2’s are there?
    ::第二步:扩大每个23个,有多少2个?

    ( 2 3 ) 5 = 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 2 2 2 2 3 = 2 15

    Step 3: What is the product of the powers?
    ::第3步:权力的产物是什么?

    3 5 = 15

    Step 4: Fill in the blank. ( a m ) n = a
    ::第4步:填空。 (am)n=a

    ( a m ) n = a m n
    :sadam)n=amn(上午)

    The other two exponent properties are a form of the .
    ::其他两种指数属性是...的一种形式。

    Power of a Product Property : ( a b ) m = a m b m
    ::产品产权的功率sadab)m=ambm

    Power of a Quotient Property : ( a b ) m = a m b m
    ::引号属性的功率sadab)m=ambm

    Simplify ( 3 4 ) 2
    ::简化( 3434) 2

    ( 3 4 ) 2 = 3 4 2 = 3 8 = 6561

    Simplify ( x 2 y ) 5
    ::简化 (x2y) 5

    ( x 2 y ) 5 = x 2 5 y 5 = x 10 y 5


    :sadx2y) 5=x2=x2=5y5=x10y5

    Simplify ( 3 a 6 2 2 a 2 ) 4 (do not leave any negative exponents)
    ::简化 (3a- 622a2) 4 (不要留下任何负指数)

    This problem  uses the Negative Exponent Property . Distribute the 4 t h power first and then move the negative power of a from the numerator to the denominator.
    ::这个问题使用负指数属性。 先分配第4次功率, 然后将分子的负功率从分子移动到分母 。

    ( 3 a 6 2 2 a 2 ) 4 = 3 4 a 6 4 2 2 4 a 2 4 = 81 a 24 2 8 a 8 = 81 256 a 8 + 24 = 81 256 a 32


    :sad3a-622a2)4=34a-64224a24=81a-2428a8=81256a8+24=81256a32

    Simplify 4 x 3 y 4 z 6 12 x 2 y ÷ ( 5 x y 1 15 x 3 z 2 ) 2  (do not leave any negative exponents)
    ::简化 4x- 3y4z4z612x2y( 5xy- 115x3z-2) 2 (不要留下任何负指数)

    This problem is definitely as complicated as these types of problems get. Here, all the properties of exponents will be used. Remember that dividing by a fraction is the same as multiplying by its reciprocal .
    ::这个问题肯定和这类问题一样复杂。 在这里, 所有的指数属性都将被使用。 记住, 分数除以一个分数与对等乘法相同 。

    4 x 3 y 4 z 6 12 x 2 y ÷ ( 5 x y 1 15 x 3 z 2 ) 2 = 4 x 3 y 4 z 6 12 x 2 y 225 x 6 z 4 25 x 2 y 2 = y 3 z 6 3 x 5 9 x 4 y 2 z 4 = 3 x 4 y 5 z 6 x 5 z 4 = 3 y 5 z 2 x


    ::4-3y4z612x2y(5xy-115x3z-2)2=4x-3y4z612x2y225x6z-425x2y=425x2y2=y3z63x5}9x4y2z4=3x4y5z6x5z4=3y5z2x

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the number of  bacteria that remained 24 hours later. 
    ::早些时候,有人要求你找到24小时后留下的细菌数量。

    To find the number of bacteria remaining, we use the exponential expression 1000 ( 1 2 ) n where n is the number of four-hour periods.
    ::为了找到剩余细菌的数量, 我们使用指数表达式 1000( 12)n, 其中 n 是四个小时的间隔数 。

    There are 6 four-hour periods in 24 hours, so we set n equal to 6 and solve.
    ::24小时有6个4小时的时段 所以我们设定了等于6的时段 然后解决

    1000 ( 1 2 ) 6

    Applying the Power of a Quotient Property, we get:
    ::运用引号属性的力量,我们得到:

    1000 ( 1 6 2 6 ) = 1000 1 2 6 = 1000 64 = 15.625

    Therefore , there are 15.625 bacteria remaining after 24 hours.
    ::因此,24小时后还剩下15.625种细菌。

    Example 2
    ::例2

    Simplify without negative exponents:  ( 5 a 3 b 4 ) 7 .
    :sad5a3b4)7。

    Distribute the 7 to every power within the parenthesis.
    ::将7号分配到括号内的所有权力

    ( 5 a 3 b 4 ) 7 = 5 7 a 21 b 28 = 78 , 125 a 21 b 28


    :sad5a3b4)7=57a21b28=78,125a21b28

    Example 3
    ::例3

    Simplify without negative exponents:  ( 2 x 5 ) 3 ( 3 x 9 ) 2 .
    ::简化无负指数sad2x5)-3(3x9)2。

    Distribute the -3 and 2 to their respective parenthesis and then use the properties of negative exponents, quotient and product properties to simplify.
    ::将 - 3 和 2 分配给各自的括号,然后使用负指数、商数和产品属性的特性进行简化。

    ( 2 x 5 ) 3 ( 3 x 9 ) 2 = 2 3 x 15 3 2 x 18 = 9 x 3 8


    :sad2x5)-3(3x9)2=2-3x-1532x18=9x38)

    Example 4
    ::例4

    Simplify without negative exponents:  ( 5 x 2 y 1 ) 3 10 y 6 ( 16 x 8 y 5 4 x 7 ) 1 .
    ::简化时没有负引号 : (5x2y- 1) 310y6}(16x8y54x7) - 1 。

    Distribute the exponents that are outside the parenthesis and use the other properties of exponents to simplify. Anytime a fraction is raised to the -1 power, it is equal to the reciprocal of that fraction to the first power.
    ::分配括号外的推数, 并使用推数的其他属性来简化。 每当一个分数被提升到 - 1 功率时, 它等于该分数与第一个功率的对等值 。

    ( 5 x 2 y 1 ) 3 10 y 6 ( 16 x 8 y 5 4 x 7 ) 1 = 5 3 x 6 y 3 10 y 6 4 x 7 16 x 8 y 5 = 500 x y 3 160 x 8 y 11 = 25 8 x 7 y 14


    :sad5x2y-1)310y6(16x8y54x7)-1=53x-6y-310y64x716x8y5=500xy-3160x8y11=258x7y14)

    Review
    ::回顾

    Simplify the following expressions without negative exponents.
    ::简化以下表达式,无负引号。

    1. ( 2 5 ) 3
    2. ( 3 x ) 4
      :sad3x)4
    3. ( 4 5 ) 2
    4. ( 6 x 3 ) 3
      :sad6x3)3
    5. ( 2 a 3 b 5 ) 7
      :sad2a3b5)7
    6. ( 4 x 8 ) 2
      :sad4x8)-2
    7. ( 1 7 2 h 9 ) 1
      :sad172h9)-1
    8. ( 2 x 4 y 2 5 x 3 y 5 ) 3
      :sad2x4y25x-3y5)3
    9. ( 9 m 5 n 7 27 m 6 n 5 ) 4
      :sad9m5n-7727m6n5)-4
    10. ( 4 x ) 2 ( 5 y ) 3 ( 2 x 3 y 5 ) 2
      :sad4x)2(5y)-3(2x3y5)2
    11. ( 5 r 6 ) 4 ( 1 3 r 2 ) 5
      :sad5r6)4(13r-2)5
    12. ( 4 t 1 s ) 3 ( 2 1 t s 2 ) 3
      :sad4吨-1s)3(2吨-1吨-2)-3
    13. 6 a 2 b 4 18 a 3 b 4 ( 8 b 12 40 a 8 b 5 ) 2
      ::6a2b418a-3b4(8b1240a-8b5)2
    14. 2 ( x 4 y 4 ) 0 2 4 x 3 y 5 z ÷ 8 z 10 32 x 2 y 5
      ::2(x4y4)024x3y5z8z1032x-2y5
    15. 5 g 6 15 g 0 h 1 ( h 9 g 15 j 7 ) 3
      ::5g615g0h-1(h9g15j7)-3
    16. Challenge  a 7 b 10 4 a 5 b 2 [ ( 6 a b 12 ) 2 12 a 9 b 3 ] 2 ÷ ( 3 a 5 b 4 ) 3
      ::a7b104a-5b-2[(6ab12)21212a9b-33]2(3a5b-4)3
    17. Rewrite 4 3 as a power of 2.
      ::重写43是2的功率
    18. Rewrite 9 2 as a power of 3.
      ::将92重写为3的功率
    19. Solve the equation for x . 3 2 3 x = 3 8
      ::解析 x. 323x=38 的方程
    20. Solve the equation for x . ( 2 x ) 4 = 4 8
      ::解析 x. (2x)4=48 的方程

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。