6.8 将夸度表的聚合物乘数乘法
Section outline
-
The volume of a rectangular prism is . What are the lengths of the prism's sides?
::矩形棱晶体积为 10x3 - 25x2 - 15x。 棱晶面的长度是多少?Factoring Polynomials in Quadratic Form
::刻度表的聚合系数乘数The last type of factorable polynomial are those that are in quadratic form . Quadratic form is when a polynomial looks like a trinomial or binomial and can be factored like a quadratic. One example is when a polynomial is in the form . Another possibility is something similar to the difference of squares , . This can be factored to or . Always keep in mind that the greatest common factors should be factored out first.
::最后一个可考虑的多元性类型是四面形的。 二次曲线形式是多面形看起来像三边形或二进制, 并且可以像四方形那样进行计算。 一个例子是多面形为x4+bx2+c。 另一种可能性与正方形( a4-b4) 的差别相似, 可以与(a2-b2)(a2+b2) 或(a-b)(a2+b)(a2+b2) 或(a-b)(a2) +b) 或(b)(a2+b) 。 始终要记住, 最共同的因素应该首先被考虑。1. Factor the polynomial:
::1. 多数值系数: 2x4-x2-15This particular polynomial is factorable. First, . The factors of -30 that add up to -1 are -6 and 5. Expand the middle term and then use factoring by grouping .
::此特定的多数值是因数 。 首先, ac\\\\ 30。 - 30 的乘数加到 - 1, 是 - 6 和 5 。 扩大中期, 然后通过分组使用乘数 。
::2x4 - x2 - 152x4 - 6x4 - 6x2+5x2 - 152x2(x2 - 3)+5(x2 - 3)(x2 - 3)(x2 - 3)(2x2+5)Both of the factors are not factorable, so we are done.
::这两个因素都是不可考虑的因素,因此我们这样做了。2. Factor the polynomial:
::2. 多数值系数: 81x4-16Treat this polynomial equation like a difference of squares.
::将这个多面方程式作为方形的差数处理 。
::81x4-16(9x2-4)(9x2+4)Now, we can factor using the difference of squares a second time.
::现在,我们可以第二次使用方形的差数来乘以9x2-4。
:3x-2(3x+2)(9x2+4))
cannot be factored because it is a sum of squares. This will have imaginary solutions.
::9x2+4 无法计算, 因为它是方形之和。 这将包含假想的解决方案 。Now, let's find all the real-number solutions of .
::现在,让我们找到所有 6x5 -51x3 -27x=0的 真实数字解决方案。First, pull out the GCF among the three terms .
::首先,在三个条件中拿出绿色气候基金。
::6x5 - 51x3 - 27x=03x(2x4 - 17x2 - 9)=0Factor what is inside the parenthesis like a quadratic equation . and the factors of -18 that add up to -17 are -18 and 1. Expand the middle term and then use factoring by grouping.
::括号内的系数是- 17。 ac\\\ 18 和 - 18 的系数是 - 17是 - 18 和 1. 扩大中期,然后通过分组使用乘数。
::6x5-51-51x3-27x=03x(2x4-17x2-9)=03x(2x4-18x2+x2-9)=03x[2x2(x2-9)+1(x2-9)]=03x(x2-9)(2x2+1)=0Factor further and solve for where possible. is not factorable.
::2x2+1 无法计算。
::3x(x2- 9) (2x2+1) =03x(x-3)(x+3)(2x2+1) =0x*3,0,3)Examples
::实例Example 1
::例1Earlier, you were asked to find the lengths of the prism's sides.
::早些时候,有人要求你找出棱镜两面的长度。To find the lengths of the prism's sides, we need to factor .
::要找到棱镜侧的长度, 我们需要乘以 10x3 - 25x2 - 15x。First, pull out the GCF among the three terms.
::首先,在三个条件中拿出绿色气候基金。
::10x3 - 25x2 - 15x5x(2x2 - 5x-3)Factor what is inside the parenthesis like a quadratic equation. and the factors of -6 that add up to -5 are -6 and 1.
::括号内的系数,如二次方程。 ac6, 加上 -5 的 -6 系数为 -6 和 1。
::5x(2x2-5x-3)=5x(2x+1)(x-3)Therefore , the lengths of the rectangular prism's sides are , , and .
::因此,矩形棱柱两侧的长度分别为5x、2x+1和x-3。Example 2
::例2Factor: .
::系数:3x4+14x2+8。and the factors of 24 that add up to 14 are 12 and 2.
::ac=24,24系数加到14是12和2。
::3x4+14x2+83x4+12x2+2x2+832x2(x2+4)+2(x4+4(x2+4)(x2+4)(3x2+2)Example 3
::例3Factor: .
::系数:36x4-25。Factor this polynomial like a difference of squares.
::将这个多面形像平方形的差数乘以 。
::36x4-25(6x2-5)(6x2+5)6 and 5 are not square numbers, so this cannot be factored further.
::6和5不是平方数字,因此无法进一步计算。Example 4
::例4Find all the real-number solutions of .
::查找 8x5+26x3- 24x=0 的所有真实数字解决方案 。Pull out a from each term.
::从每个学期抽出2x
::8x5+26x3-24x3-24x=02x(4x4+13x-12)=02x(4x4+16x2-3x2-12)=02x[4x2(x2+4)-3(x2+4)]=02x(x2+4)(4x2-3)=0Set each factor equal to zero.
::设定每个系数等于零。
::4x2 - 3=02x=0x2+4=0和x2=0和x2=34x=0x2=4x4x4x_*4x_***32Notice the second factor will give imaginary solutions.
::注意第二个因素将给出假想的解决方案。Review
::回顾Factor the following quadratics completely.
::系数如下二次方位完全。-
::x4 - 6x2+8 -
::x4 - 4x2 - 45 -
::x4 - 18x2+45 -
::4x4-11x2-3 -
::6x4+19x2+8 -
::x4 - 81 -
::16x4-1 -
::6x5+26x3-20x -
::4x6-36x2 -
::625-814x4
Find all the real-number solutions to the polynomials below.
::找到所有真实数字的解决方案 来解决下面的多元分子问题。-
::2x4 - 5x2 - 12=0 -
::x4 - 16=0 -
::16x4-49=0 -
::12x6+69x4+45x2=0 -
::3x4+17x2-6=0
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -